scholarly journals Enhanced Degradation of Sulfamethoxazole (SMX) in Toilet Wastewater by Photo-Fenton Reactive Membrane Filtration

Nanomaterials ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 180
Author(s):  
Shaobin Sun ◽  
Hong Yao ◽  
Xinyang Li ◽  
Shihai Deng ◽  
Shenlong Zhao ◽  
...  

Pharmaceutical residuals are increasingly detected in natural waters, which made great threat to the health of the public. This study evaluated the utility of the photo-Fenton ceramic membrane filtration toward the removal and degradation of sulfamethoxazole (SMX) as a model recalcitrant micropollutant. The photo-Fenton catalyst Goethite (α-FeOOH) was coated on planar ceramic membranes as we reported previously. The removal of SMX in both simulated and real toilet wastewater were assessed by filtering the feed solutions with/without H2O2 and UV irradiation. The SMX degradation rate reached 87% and 92% respectively in the presence of UV/H2O2 for the original toilet wastewater (0.8 ± 0.05 ppb) and toilet wastewater with a spiked SMX concentration of 100 ppb. The mineralization and degradation by-products were both assessed under different degradation conditions to achieve deeper insight into the degradation mechanisms during this photo-Fenton reactive membrane filtration. Results showed that a negligible removal rate (e.g., 3%) of SMX was obtained when only filtering the feed solution through uncoated or catalyst-coated membranes. However, the removal rates of SMX were significantly increased to 67% (no H2O2) and 90% (with H2O2) under UV irradiation, respectively, confirming that photo-Fenton reactions played the key role in the degradation/mineralization process. The highest apparent quantum yield (AQY) reached up to approximately 27% when the H2O2 was 10 mmol·L−1 and UV254 intensity was 100 μW·cm−2. This study lays the groundwork for reactive membrane filtration to tackle the issues from micropollution.

2016 ◽  
Vol 75 (2) ◽  
pp. 439-450 ◽  
Author(s):  
Asmaa Ali ◽  
Abdelkader Ahmed ◽  
Ali Gad

This study aims to investigate the ability of low cost ceramic membrane filtration in removing three common heavy metals namely; Pb2+, Cu2+, and Cd2+ from water media. The work includes manufacturing ceramic membranes with dimensions of 15 by 15 cm and 2 cm thickness. The membranes were made from low cost materials of local clay mixed with different sawdust percentages of 0.5%, 2.0%, and 5.0%. The used clay was characterized by X-ray diffraction (XRD) and X-ray fluorescence analysis. Aqueous solutions of heavy metals were prepared in the laboratory and filtered through the ceramic membranes. The influence of the main parameters such as pH, initial driving pressure head, and concentration of heavy metals on their removal efficiency by ceramic membranes was investigated. Water samples were collected before and after the filtration process and their heavy metal concentrations were determined by chemical analysis. Moreover, a microstructural analysis using scanning electronic microscope (SEM) was performed on ceramic membranes before and after the filtration process. The chemical analysis results showed high removal efficiency up to 99% for the concerned heavy metals. SEM images approved these results by showing adsorbed metal ions on sides of the internal pores of the ceramic membranes.


Membranes ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 651
Author(s):  
Haotian Mu ◽  
Qi Qiu ◽  
Renzhen Cheng ◽  
Liping Qiu ◽  
Kang Xie ◽  
...  

With the development of the refining industry, the treatment of refinery wastewater has become an urgent problem. In this study, a ceramic membrane (CM) was combined with Fenton-activated carbon (AC) adsorption to dispose of refinery wastewater. The effect of the combined process was analyzed using excitation–emission matrix (EEM), ultraviolet-visible (UV-vis) and Fourier transform infrared spectroscopies (FTIR). Compared with direct filtration, the combined process could significantly improve the removal of organic pollution, where the removal rate of the COD and TOC could be 70% and the turbidity removal rate was above 97%. It was found that the effluent could meet the local standards. In this study, the membrane fouling was analyzed for the impact of the pretreatment on the membrane direction. The results showed that Fenton-AC absorption could effectively alleviate membrane fouling. The optimal critical flux of the combined process was increased from 60 to 82 L/(m2·h) compared with direct filtration. After running for about 20 d, the flux remained at about 55 L/(m2·h) and the membrane-fouling resistance was only 1.2 × 1012 m−1. The Hermia model revealed that cake filtration was present in the early stages of the combined process. These results could be of great use in improving the treatment efficiency and operation cycle of refinery wastewater.


2006 ◽  
Vol 6 (4) ◽  
pp. 89-98 ◽  
Author(s):  
A. Loi-Brügger ◽  
S. Panglisch ◽  
P. Buchta ◽  
K. Hattori ◽  
H. Yonekawa ◽  
...  

A new ceramic membrane has been designed by NGK Insulators Ltd., Japan, to compete in the drinking water treatment market. The IWW Water Centre, Germany, investigated the operational performance and economical feasibility of this ceramic membrane in a one year pilot study of direct river water treatment with the hybrid process of coagulation and microfiltration. The aim of this study was to investigate flux, recovery, and DOC retention performance and to determine optimum operating conditions of NGK's ceramic membrane filtration system with special regards to economical aspects. Temporarily, the performance of the ceramic membrane was challenged under adverse conditions. During pilot plant operation river water with turbidities between 3 and 100 FNU was treated. Membrane flux was increased stepwise from 80–300 l/m2h resulting in recoveries between 95.9 and 98.9%. A DOC removal between about 20–35% was achieved. The pilot study and the subsequent economical evaluation showed the potential to provide a reliable and cost competitive process option for water treatment. The robustness of the ceramic membrane filtration process makes it attractive for a broad range of water treatment applications and, due to low maintenance requirements, also suitable for drinking water treatment in developing countries.


2004 ◽  
Vol 50 (12) ◽  
pp. 317-325 ◽  
Author(s):  
H. Yonekawa ◽  
Y. Tomita ◽  
Y. Watanabe

This paper is intended to clarify the characteristics unique to monolith ceramic membranes with pre-coagulation by referring to the behavior of micro-particles. Flow analysis and experiments have proved that monolith ceramic membranes show a unique flow pattern in the channels within the element, causing extremely rapid flocculation in the channel during dead-end filtration. It was assumed that charge-neutralized micro-particles concentrated near the membrane surface grow in size due to flocculation, and as a result, coarse micro-particles were taken up by the shearing force to flow out. As the dead end points of flow in all the channels are located near the end of the channels with higher filterability, most of the flocculated coarse particles are formed to a columnar cake intensively at the dead end point. Therefore cake layer forming on the membrane other than around the dead end point is alleviated. This behavior of particle flocculation and cake formation at the dead end point within the channels are unique characteristics of monolith ceramic membranes. This is why all monolith ceramic membrane water purification systems operating in Japan do not have pretreatment equipment for flocculation and sedimentation.


2019 ◽  
Vol 14 (2) ◽  
pp. 331-340
Author(s):  
P. Spencer ◽  
S. Domingos ◽  
B. Edwards ◽  
D. Howes ◽  
H. Shorney-Darby ◽  
...  

Abstract The Water Corporation of Western Australia uses polymeric ultrafiltration (UF) membranes across a range of applications including surface waters with high natural organic matter (NOM), recycling of secondary treated wastewater and pre-treatment for seawater reverse osmosis (SWRO). These challenging raw water conditions require expensive chemical dosing and clean-in-place (CIP) regimes, high frequency of membrane replacement and reduced membrane life. The greater durability of ceramic membranes, with optimal ozone and coagulant dosing, offer a potential capital and operating advantage over polymeric UF membranes. The Water Corporation collaborated with PWN Technologies (PWNT) to establish a ceramic membrane pilot plant at the Beenyup Wastewater Treatment Plant (WWTP). Optimised performance of the pilot plant was established and compared with existing UF membranes treating secondary treated wastewater prior to reverse osmosis (RO) in an indirect potable wastewater recycling application. Findings show a sustainable flux rate of 150 L/m2/h is achievable with ceramic MF membranes while filtering secondary treated wastewater. Higher flux rates up to 250 L/m2/h have been tested and are possibly sustainable, however, other bottlenecks in the pilot plant (ozone generator capacity) prevented longer test runs at this flux. Comparable design flux rates for polymeric UF membranes are 50 L/m2/h.


2020 ◽  
Vol 10 (7) ◽  
pp. 2414
Author(s):  
Nag-Choul Choi ◽  
Kang-Hee Cho ◽  
Min-Sung Kim ◽  
Seong-Jik Park ◽  
Chang-Gu Lee

Ceramic membranes and ion exchangers are effective at removing turbidity and ionic contaminants from water, respectively. In this study, we demonstrate the performance of a hybrid ion-exchange fabric/ceramic membrane system to treat metal ions and turbidity at the same time in synthetic wastewater. The removal rate of As(V) and Zn(II) by the ceramic membrane increased with solution pH, while turbidity was completely removed regardless of the solution pH. The main reaction of As(V) removal was adsorption at solution pH 6 and precipitation at solution pH 8, whereas phase-change was the predominant reaction for Zn(II) removal at both solution pH values. The removal efficiency of the ion-exchange fabric was affected by the solution pH, with the maximum removal capacity of As(V) occurring at solution pH 4. The As(V) adsorption capacity of the ion-exchange fabric reached equilibrium within 120 min. The ion-exchange capacity of the ion-exchange fabric was compared with commercial ion-exchange fibers. The regeneration efficiency of the ion-exchange fabric using 0.1 M NaCl solution was around 95% on average and decreased slightly as the number of regeneration cycles was increased. Over 80% of As(V) and Zn(II) were steadily removed at solution pH 6 by the hybrid ion-exchange fabric/ceramic membrane system. Reduced flow rate and removal capacity were recovered through a backwashing process during continuous treatment with the hybrid ion-exchange fabric/ceramic membrane system.


2001 ◽  
Vol 1 (5-6) ◽  
pp. 91-96 ◽  
Author(s):  
M. Shioyama ◽  
T. Kawanishi ◽  
S. Yokoyama ◽  
M. Nuno ◽  
T. Yamamoto

Combining the Kubota Tank-Submerged type Ceramic Membrane filtration (TSCM) system with ozonation and powdered activated carbon (PAC) treatment, a new water treatment system, the advanced TSCM system, has been developed. It is a compact, maintenance-free and high performance system for water treatment plants in the small and medium size cities. In this paper, experimental results using 5.5m3/day demonstration plants are shown, and treatment performance is discussed mainly focussing on removal of disinfection by-products. Turbidity, color, total iron, total manganese and ammonia nitrogen were removed to below their detection limits. Accumulation of suspended solids including PAC at a maximum concentration of 8000 mg/L in the membrane tank increases biological degradation activity in the TSCM system. Furthermore, it was confirmed that the advanced TSCM system was able to effectively eliminate disinfection by-products and other organic contaminants in raw water. 75% of T-THMFP removal rate was obtained at only 10 mg-PAC/L dosage without the effect of ozone dosage, while the PAC treatment at 50 mg-PAC/L dosage prior to coagulation results in T-THMFP removals ranging from 40 to 60% (The Adoption Guideline of Advanced Water Treatment Facility, 1988). Therefore, it is concluded that the advanced TSCM system saves on the amount of PAC and is more cost-effective than the other conventional water treatment systems due to efficient utilization of the adsorption capacity of PAC.


Membranes ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 888
Author(s):  
Mingliang Chen ◽  
Sebastiaan G. J. Heijman ◽  
Luuk C. Rietveld

Membrane filtration is considered to be one of the most promising methods for oily wastewater treatment. Because of their hydrophilic surface, ceramic membranes show less fouling compared with their polymeric counterparts. Membrane fouling, however, is an inevitable phenomenon in the filtration process, leading to higher energy consumption and a shorter lifetime of the membrane. It is therefore important to improve the fouling resistance of the ceramic membranes in oily wastewater treatment. In this review, we first focus on the various methods used for ceramic membrane modification, aiming for application in oily wastewater. Then, the performance of the modified ceramic membranes is discussed and compared. We found that, besides the traditional sol-gel and dip-coating methods, atomic layer deposition is promising for ceramic membrane modification in terms of the control of layer thickness, and pore size tuning. Enhanced surface hydrophilicity and surface charge are two of the most used strategies to improve the performance of ceramic membranes for oily wastewater treatment. Nano-sized metal oxides such as TiO2, ZrO2 and Fe2O3 and graphene oxide are considered to be the potential candidates for ceramic membrane modification for flux enhancement and fouling alleviation. The passive antifouling ceramic membranes, e.g., photocatalytic and electrified ceramic membranes, have shown some potential in fouling control, oil rejection and flux enhancement, but have their limitations.


2021 ◽  
Vol 10 (16) ◽  
pp. e121101623331
Author(s):  
Kepler Borges França ◽  
Adriana Barbosa da Costa Pereira ◽  
Cristiane Rodrigues Macêdo ◽  
Carolina Pereira Dantas ◽  
Karine Oliveira da Costa

The management of produced water is a huge challenge for oil companies, as environmental agencies use increasingly strict laws and require a primary treatment for the disposal of waste. The conventional methods used in the treatment of oily water, cannot satisfactorily remove the environmental laws. A system is presented, with a hydrocyclone built within LABDES/UFCG, tested and characterized with oily waters with different levels of oil concentrations, in order to study its efficiency. It was observed that for different oil concentrations in the hydrocyclone feed stream of (100 to 2000) mg L-1, total oil and grease, reached an efficiency above 85%. The set of ceramic membranes, MR01-10 and MR02-20, with porosities of 43% and 52%, were used in the assembly of two types of systems, SMC-DE and SMC-FC. SMC-FC showed a removal rate above 80% for an average production of 165 L h-1 m-2. However, SMC-DE proved to be more efficient in relation to TOG, above 98%, but less efficient in relation to the permeate production flow, 63.3 L h-1.m-2. The hydrocyclone system with cross-flow ceramic membrane (SH-MC/FC) was chosen to study the reduction of oil in oily water, for a concentration range of (200 to 2000) mg L-1, which presented a removal rate above 95%.


Membranes ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 369
Author(s):  
Shengji Xia ◽  
Xinran Zhang ◽  
Yuanchen Zhao ◽  
Fibor J. Tan ◽  
Pan Li ◽  
...  

The membrane separation process is being widely used in water treatment. It is very important to control membrane fouling in the process of water treatment. This study was conducted to evaluate the efficiency of a pre-oxidation-coagulation flat ceramic membrane filtration process using different oxidant types and dosages in water treatment and membrane fouling control. The results showed that under suitable concentration conditions, the effect on membrane fouling control of a NaClO pre-oxidation combined with a coagulation/ceramic membrane system was better than that of an O3 system. The oxidation process changed the structure of pollutants, reduced the pollution load and enhanced the coagulation process in a pre-oxidation-coagulation system as well. The influence of the oxidant on the filtration system was related to its oxidizability and other characteristics. NaClO and O3 performed more efficiently than KMnO4. NaClO was more conducive to the removal of DOC, and O3 was more conducive to the removal of UV254.


Sign in / Sign up

Export Citation Format

Share Document