scholarly journals MICRONIZED CRUMB RUBBER INFLUENCE ON INDEX PROPERTIES OF WARM ASPHALT BINDERS

2021 ◽  
pp. 1-9
Author(s):  
Ahmad Batari ◽  
Saeed Modibbo ◽  
Balarabe Babangida ◽  
Isa Zubairu ◽  
Mohamad Aman

Primarily, the main aim of recycling waste tires in the form of micronized crumb rubber into asphalt cement as modifiers are to enhance their engineering properties in addition to the associated solid waste management benefits. Often, these modifiers are used to achieve reasonably stiffer binders i.e.; low penetration; high softening point; and high penetration index, to realize higher resistance to deformation under the influence of traffic and temperature. The study assessed the effects of Micronized Crumb Rubber (MCR) on the penetration, softening point, and penetration index of 80-100 PEN bitumen impregnated with 2.5 % Sasobit (fixed by weight). The MCR modified warm asphalt binders were prepared by further blending with different percentages of minus 40 mesh size MCR powder (from0 – 15 % by weight of the bitumen stepped at 2.5%). Subsequently, penetration and softening point tests were conducted on each blend, and the corresponding penetration indices were evaluated. The results show that MCR addition gradually decreases the penetration values while conversely increases both the softening point values and the penetration indices as well. Thus, MCR might be used to improve the flow and thermal susceptibility resistance of warm asphalt binders

2018 ◽  
Vol 2018 ◽  
pp. 1-14 ◽  
Author(s):  
Hanbing Liu ◽  
Mengsu Zhang ◽  
Yubo Jiao ◽  
Liuxu Fu

In this study, crumb rubber and diatomite were used to modify asphalt binder. Wet process was adopted as a preparation method, and the corresponding preparation process was determined firstly. The effects of six preparation parameters (crumb rubber concentration, diatomite concentration, shear time, shear speed, shear temperature, and storing time) on properties of modified asphalt binder (penetration at 25°C, softening point, ductility, viscosity at 135°C, elastic recovery, and penetration index) were investigated, and multiresponse optimization was conducted using the response surface method. The results revealed that softening points, viscosity, elastic recovery, and penetration index increase, while penetration and ductility decrease with the increase of crumb rubber concentration. Softening points, viscosity, and penetration index increase, while penetration and ductility decrease with the increase of diatomite concentration, which presents little influence on elastic recovery of binder. Shear temperature presented significant effects on penetration, softening point, viscosity, and ductility. Shear speed, shear time, and storing time have similar effects on binder properties because of their similar mechanism of action. Based on the model obtained from the response surface method, optimized preparation parameters corresponding to specific criteria can be determined, which possess favorable accuracy compared with experimental results.


2018 ◽  
Vol 203 ◽  
pp. 05007 ◽  
Author(s):  
Muslich Sutanto ◽  
Nura Bala ◽  
Kemal Al Zaro ◽  
Sri Sunarjono

Polymer modified binders have been used for long time to improve the quality of asphalt pavement. This study investigates the effect of crumb rubber and latex on the properties of bitumen binders. Crumb rubber and latex were added to the control 60/70 pen grade bitumen. Four different proportions of crumb rubber and latex were considered in this study: 0%, 4%, 6% and 8% by weight of bitumen binder. The effect of crumb rubber and latex were evaluated through standard penetration and softening point tests as well as dynamic shear rheometer (DSR) test. Temperature ranges of 20°C - 40°C were used for the DSR rheological testing. The results showed that the addition of crumb rubber and latex leads to a promising improvement on the binder properties. A reduction in penetration and an increase in softening point temperature were observed with the addition of either crumb rubber or latex, this indicates improvement in stiffness and rutting resistance. The analysis on DSR results also show that the modified binders have good rutting resistance.


2016 ◽  
Vol 78 (4) ◽  
Author(s):  
Shaban Imael Albrka Ali ◽  
Amiruddin Ismail ◽  
Nur Izzi Md. Yusoff ◽  
Norhidayah Abdul Hassan ◽  
Ahmad Nazrul Hakimi Ibrahim

This study investigates the physical and rheological properties of asphalt binders modified by nano aluminum oxide (AL2O3). Several conventional tests were conducted, including penetration, softening point and ductility, rotational viscosity and dynamic shear rheometer (DSR). Based on the results of the tests, it was found that the hardness of modified asphalt binders increased with the addition of nano AL2O3 up to 5%. As a result of the increased hardness, the softening point of modified asphalt improved compared with base asphalt binders. The rheological property of modified binders was enhanced at low and high temperatures. The results of a DSR test revealed that the G* were improved, whereas the δ decreased slightly. The addition of a different percentage of AL2O3 to base binder had a remarkable influence on resistance to permanent deformation (high temperature rutting and low temperature fatigue). Results recognize 5 wt.% as the optimum content of the modifier. Therefore, nano AL2O3 can be considered as a proper alternative additive to modify the properties of asphalt cement.


2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Zhihua Tan ◽  
Jijing Wang

In the past few decades, the rapid growth of automobile production in China has led to the scrapping of a large number of tires. How to dispose of tires has become a significant challenge. The addition of crushed rubber to asphalt binder not only can improve the performance of asphalt mixtures but also is an effective and environmentally friendly way to recycle scrapped tires. However, rubber asphalt mixtures demand higher production temperatures than conventional asphalt binders due to the higher viscosity of asphalt rubber binder. The main objective of this study is to evaluate the rheological properties of rubber-modified asphalt by adding polyamide 6 and investigate the modification mechanism of crumb rubber-modified asphalt (CRMA) after adding polyamide 6. To this end, the content of waste rubber in the prepared rubber asphalt was 20%. The conventional laboratory rheological tests were employed to evaluate the performance of crumb rubber-modified asphalt after adding polyamide 6. Furthermore, to investigate the interaction mechanism of crumb rubber and asphalt, a series of advanced tools, including the scanning electron microscopy (SEM) test, differential scanning calorimeter (DSC) test, and Fourier transform infrared spectroscopy (FTIR) test, were conducted. From the experimental results obtained, it may be concluded that crumb rubber-modified asphalt with adding polyamide 6 not only improves the engineering properties of the rubber-modified asphalt but also improves the performance of rubber asphalt. From the FTIR and SEM tests, it is concluded that there is no new functional group in the mixing process of crumb rubber and the asphalt, which contributes to the storage stability of asphalt binder and runway.


2014 ◽  
Vol 911 ◽  
pp. 484-488 ◽  
Author(s):  
Sudniran Phetcharat

Enhancing the quality of AC 60/70 using crumb rubber and SBS polymer has its limitations. These limitations are in terms of lower than standard penetration properties, softening point and ductility based on the polymer modified asphalt cement TISI 2156-2547 standard. This research aimed at eliminating the problem by using AC 80/100 and modifying it with crumb rubber or SBS polymer at different quantities. Two types of AC were compared in this research. The qualities tested were penetration, softening point, ductility, flash point and weight loss due to heat. The results of the quality of properties tested were analyzed based on TISI 2156-2547 standardfor AC. Furthermore, the research goes on to analyze the cost effectiveness of the modification and found that modified AC 80/100 has better qualities than AC 60/70 but is 5% higher in cost. Modifying AC 80/100 with 5 wt.% crumb rubber and 4 wt.% SBS polymer will decrease the penetration and ductility problem compared to modifying AC 60/70 with the same additives. However, the softening point is still a problem for both grades of AC.


Environments ◽  
2021 ◽  
Vol 8 (6) ◽  
pp. 47
Author(s):  
Lim Min Khiong ◽  
Md. Safiuddin ◽  
Mohammad Abdul Mannan ◽  
Resdiansyah

This paper presents the results of a laboratory-based experimental investigation on the properties of asphalt binder and hot-mix asphalt (HMA) mixes modified by locally available crumb rubber, which was used as a partial replacement of asphalt by weight. In this study, fine crumb rubber with a particle size in the range of 0.3–0.6 mm, obtained from scrap tires, was added to the asphalt binder through the wet process. Crumb rubber contents of 5%, 10%, 15%, and 19% by weight of asphalt were added to the virgin binder in order to prepare the modified asphalt binder samples, while the unmodified asphalt binder was used as the control sample. The crumb rubber modified binder samples were examined for measuring viscosity indirectly using the penetration test, and temperature resistance using the softening point test. Later, both the modified and unmodified asphalt binders were used to produce HMA mixes. Two categories of HMA mix commonly used in Malaysia—namely, AC 14 (dense-graded) and SMA 14 (gap-graded)—were produced using the modified asphalt binders containing 5%, 10%, 15%, and 19% crumb rubber. Two AC 14 and SMA 14 control mixes were also produced, incorporating the unmodified asphalt binder (0% crumb rubber). All of the AC 14 and SMA 14 asphalt mixes were examined in order to determine their volumetric properties, such as bulk density, voids in total mix (VTM), voids in mineral aggregate (VMA), and voids filled with asphalt (VFA). In addition, the Marshall stability, Marshall flow, and stiffness of all of the AC 14 and SMA 14 mixes were determined. Test results indicated that the modified asphalt binders possessed higher viscosity and temperature resistance than the unmodified asphalt binder. The viscosity and temperature resistance of the asphalt binders increased with the increase in their crumb rubber content. The increased crumb rubber content also led to improvements in the volumetric properties (bulk density, VTM, VMA, and VFA) of the AC 14 and SMA 14 mixes. In addition, the performance characteristics of the AC 14 and SMA 14 mixes—such as Marshall stability, Marshall flow, and stiffness—increased with the increase in crumb rubber content. However, the AC 14 mixes performed much better than the SMA 14 mixes. The overall research findings suggest that crumb rubber can be used to produce durable and sustainable HMA mixes, with manifold environmental benefits, for use in flexible pavements carrying the heavy traffic load of highways.


2016 ◽  
Vol 35 (1) ◽  
pp. 30-36 ◽  
Author(s):  
Mahmoud Ameri ◽  
Mohammad Reza Seif ◽  
Massoumeh Abbasi ◽  
Alireza Khavandi Khiavi

2017 ◽  
Vol 50 (3) ◽  
pp. 241-255 ◽  
Author(s):  
Seyfullah Keyf

In this article, 50/70 penetration grade TUPRAS bitumen was modified. Reactive elastomeric terpolymer (Elvaloy RET; DuPont Company), ethylene vinyl acetate (EVA) and styrene–butadiene–styrene (SBS) polymers were used in bitumen modification. Set hours of the tests were applied to samples taken from the obtained modified bitumen mixture. Varying amount of reactive ethylene terpolymer with weight ratios of 0.5%, 1.0%, 1.5%, 2.0% and 2.5% were introduced to the mixture of raw bitumen with 1.0% SBS and 1.0% EVA. Penetration, penetration index, softening point, ductility and elastic recovery tests were performed with these modified bitumen and raw bitumen. The samples of raw bitumen and modified bitumens of 2.0% Elvaloy RET, 1.0% SBS and 1.0% EVA were investigated by means of IR spectroscopy. The raw bitumen was modified with SBS, EVA and RET, and it was determined that penetration and ductility values were decreased while penetration index, softening point and elastic recovery were increased. The purpose of this study is to research the improving properties of 50/70 penetration grade–modified bitumen used in highways of Turkey. The most important characteristics (such as softening point, penetration and % elastic recovery) of new polymer-modified bitumen (NPMB) containing 2.5% EVA, 1% RET and 1% SBS were compared with eight different types of polymer-modified bitumens in Turkey (TPMB). NPMB provided all required parameters (softening point, penetration and % elastic recovery) for five different types of TPMBs (TPMB 70-16, TPMB 70-22, TPMB 76-16, TPMB 76-22 and TPMB 82-16).


Sign in / Sign up

Export Citation Format

Share Document