scholarly journals Control of Runoff Peak Flow for Urban Flooding Mitigation

Water ◽  
2021 ◽  
Vol 13 (13) ◽  
pp. 1796
Author(s):  
Yunan Lu ◽  
Jinli Xie ◽  
Cheng Yang ◽  
Yinghong Qin

Urban flooding has become a serious but not well-resolved problem during the last decades. Traditional mainstream facilities, such as vegetated roofs, permeable pavements, and others, are effective to eliminate urban flooding only in case of small rains because the water-retaining and detaining capacities of these traditional facilities are limited. Here, we propose a new buffer tank buried in soil to deal with rainwater onsite as peak-flow control for urban flooding mitigation. Experiments showed that the buffer tank intercepts the surface runoff and discharges the intercepted water through a designed outlet orifice. By properly setting the cross-sectional area of the orifice, the tank extends the drainage duration several times longer than that of the rainfall duration. It is found that the buffer tank attenuates the peak flow greater at heavier rain. At small rain (<2.5 mm), the tank is always unfilled, preserving storage spaces for detaining rainwater in case of heavy rain. The buffer tank is thus greatly helpful to mitigate the flooding problem, avoiding being saturated by small long-lasting rain.

2019 ◽  
Vol 5 (12) ◽  
pp. 2525-2534 ◽  
Author(s):  
Yinghong Qin ◽  
Zhengce Huang ◽  
Zebin Yu ◽  
Zhikui Liu ◽  
Lei Wang

Impermeable pavements and roofs in urban areas convert most rainfall to runoff, which is commonly discharged to local sewers pipes and finally to the nearby streams and rivers. In case of heavy rain, the peak flow of runoff usually exceeds the carrying capacity of the local sewer pipes, leading to urban flooding. Traditional facilities, such as green roofs, permeable pavements, soakaways, rainwater tanks, rain barrels, and others reduce the runoff volume in case of a small rain but fail in case of a heavy rain. Here we propose a novel rainwater buffer tank to detain runoff from the nearby sealed surfaces in case of heavy rain and then to discharge rainwater from an orifice at the tank’s bottom. We found that considering a 100m2 rooftop with 0.80 runoff coefficient and a 10cm rainfall depth for an hour, a cubic tank with internal edge side of a square of 2 m attenuates the peak flow about 45%. To reduce a desirable peak flow, the outlet orifice of the buffer tank must be optimized according to site-specific conditions. The orifice can be set at an elevation from the tank’s bottom to create a dead storage for harvesting rainwater.


2020 ◽  
Author(s):  
Arslan Zahid ◽  
Bryn Martin ◽  
Stephanie Collins ◽  
John N. Oshinski ◽  
Christopher Ross Ethier

Abstract Background: Astronauts undergoing long-duration spaceflight are exposed to numerous health risks, including Spaceflight-Associated Neuro-Ocular Syndrome (SANS), a spectrum of ophthalmic changes that can result in permanent loss of visual acuity. The etiology of SANS is not well understood but is thought to involve changes in cerebrovascular flow dynamics in response to microgravity. There is a paucity of knowledge in this area; in particular, cerebrospinal fluid (CSF) flow dynamics have not been well characterized under microgravity conditions. Our study was designed to determine the effect of simulated microgravity (head-down tilt [HDT]) on cerebrovascular flow dynamics. We hypothesized that under microgravity conditions simulated by HDT, increased pressure in the intracranial space would alter intracranial CSF and venous flow dynamics by causing: 1) venous congestion reflected by increased venous cross-sectional area; and 2) a decrease in cardiac-related CSF flow oscillations. Methods: In a prospective cohort study, we measured flow in major cerebral arteries, veins, and CSF spaces in fifteen healthy volunteers using phase contrast magnetic resonance (PCMR) before and during 15° HDT. Results: We found a significant increase in venous cross-sectional area with HDT (p=0.005), indicating venous congestion, along with a decrease in all CSF flow parameters [systolic peak flow (p=0.009), peak-to-peak pulse amplitude (p=0.001), and stroke volume (p=0.10)]. Arterial average flow (p=0.04), systolic peak flow (p=0.04), and peak-to-peak pulse amplitude (p=0.02) all also significantly decreased. Conclusions: These results collectively demonstrate that acute application of 15° HDT caused a reduction in CSF flow parameters (systolic peak flow and peak-to-peak pulse amplitude), coupled with an increase in venous CSA suggesting increased venous congestion with HDT.


2020 ◽  
Author(s):  
Arslan Zahid ◽  
Bryn Martin ◽  
Stephanie Collins ◽  
John N. Oshinski ◽  
Christopher Ross Ethier

Abstract Background: Astronauts undergoing long-duration spaceflight are exposed to numerous health risks, including Spaceflight-Associated Neuro-Ocular Syndrome (SANS), a spectrum of ophthalmic changes that can result in permanent loss of visual acuity. The etiology of SANS is not well understood but is thought to involve changes in cerebrovascular flow dynamics in response to microgravity. There is a paucity of knowledge in this area; in particular, cerebrospinal fluid (CSF) flow dynamics have not been well characterized under microgravity conditions. Our study was designed to determine the effect of simulated microgravity (head-down tilt [HDT]) on cerebrovascular flow dynamics. We hypothesized that under microgravity conditions simulated by HDT, increased pressure in the intracranial space would alter intracranial CSF and venous flow dynamics by causing: 1) increased venous pressure reflected by increased venous cross-sectional area; and 2) a decrease in cardiac-related pulsatile CSF flow.Methods: In a prospective cohort study, we measured flow in major cerebral arteries, veins, and CSF spaces in fifteen healthy volunteers using phase contrast magnetic resonance (PCMR) before and during 15° HDT.Results: We found a significant increase in venous cross-sectional area with HDT (p=0.005), indicating increased venous pressure, along with a decrease in all CSF flow variables [systolic peak flow (p=0.009), and peak-to-peak pulse amplitude (p=0.001)]. Arterial average flow (p=0.04), systolic peak flow (p=0.04), and peak-to-peak pulse amplitude (p=0.02) all also significantly decreased.Conclusions: These results collectively demonstrate that acute application of 15° HDT caused a reduction in CSF flow variables (systolic peak flow and peak-to-peak pulse amplitude), coupled with an increase in venous CSA suggesting increased venous pressure with HDT.


1994 ◽  
Vol 07 (03) ◽  
pp. 110-113 ◽  
Author(s):  
D. L. Holmberg ◽  
M. B. Hurtig ◽  
H. R. Sukhiani

SummaryDuring a triple pelvic osteotomy, rotation of the free acetabular segment causes the pubic remnant on the acetabulum to rotate into the pelvic canal. The resulting narrowing may cause complications by impingement on the organs within the pelvic canal. Triple pelvic osteotomies were performed on ten cadaver pelves with pubic remnants equal to 0, 25, and 50% of the hemi-pubic length and angles of acetabular rotation of 20, 30, and 40 degrees. All combinations of pubic remnant lengths and angles of acetabular rotation caused a significant reduction in pelvic canal-width and cross-sectional area, when compared to the inact pelvis. Zero, 25, and 50% pubic remnants result in 15, 35, and 50% reductions in pelvic canal width respectively. Overrotation of the acetabulum should be avoided and the pubic remnant on the acetabular segment should be minimized to reduce postoperative complications due to pelvic canal narrowing.When performing triple pelvic osteotomies, the length of the pubic remnant on the acetabular segment and the angle of acetabular rotation both significantly narrow the pelvic canal. To reduce post-operative complications, due to narrowing of the pelvic canal, overrotation of the acetabulum should be avoided and the length of the pubic remnant should be minimized.


2020 ◽  
Vol 0 (4) ◽  
pp. 19-24
Author(s):  
I.M. UTYASHEV ◽  
◽  
A.A. AITBAEVA ◽  
A.A. YULMUKHAMETOV ◽  
◽  
...  

The paper presents solutions to the direct and inverse problems on longitudinal vibrations of a rod with a variable cross-sectional area. The law of variation of the cross-sectional area is modeled as an exponential function of a polynomial of degree n . The method for reconstructing this function is based on representing the fundamental system of solutions of the direct problem in the form of a Maclaurin series in the variables x and λ. Examples of solutions for various section functions and various boundary conditions are given. It is shown that to recover n unknown coefficients of a polynomial, n eigenvalues are required, and the solution is dual. An unambiguous solution was obtained only for the case of elastic fixation at one of the rod’s ends. The numerical estimation of the method error was made using input data noise. It is shown that the error in finding the variable crosssectional area is less than 1% with the error in the eigenvalues of longitudinal vibrations not exceeding 0.0001.


Author(s):  
S.Sh. Gammadaeva ◽  
M.I. Misirkhanova ◽  
A.Yu. Drobyshev

The study analyzed the functional parameters of nasal breathing, linear parameters of the nasal aperture, nasal cavity and nasopharynx, volumetric parameters of the upper airways in patients with II and III skeletal class of jaw anomalies before and after orthognathic surgery. The respiratory function of the nose was assessed using a rhinomanometric complex. According to rhinoresistometry data, nasal resistance and hydraulic diameter were assessed. According to the data of acoustic rhinometry, the minimum cross-sectional area along the internal valve, the minimum cross-sectional area on the head of the inferior turbinate and nasal septum and related parameters were estimated. According to the CBCT data, the state of the nasal septum, the inferior turbinates, the nasal aperture, the state of the nasal cavity, and the linear values of the upper respiratory tract (nasopharynx) were analyzed. The patients were divided into 4 groups according to the classification of the patency of the nasal passages by


1986 ◽  
Vol 21 (1) ◽  
pp. 130-140 ◽  
Author(s):  
Da-hong Li ◽  
J. J. Ganczarczyk

Abstract The computerized image analysis system has been successfully used for determination and statistical processing of the following geometric characteristics of activated sludge flocs: longest dimension, breadth, equivalent diameter, cross-sectional area, perimeter, elongation, and circularity. These parameters could be effectively and precisely determined by the system applied. In addition, the studied method, as compared to direct microscope observation and photography floc-sizing methods, was found to be more accurate, less time-consuming, and less dependent on the investigators.


Sign in / Sign up

Export Citation Format

Share Document