scholarly journals ECO-spotting: looking for extremely compact objects with bosonic fields

Author(s):  
Vitor Cardoso ◽  
Caio F. B. Macedo ◽  
Kei-ichi Maeda ◽  
Hirotada Okawa

Abstract Black holes are thought to describe the geometry of massive, dark compact objects in the universe. To further support and quantify this long-held belief requires knowledge of possible, if exotic alternatives. Here, we wish to understand how compact can self-gravitating solutions be. We discuss theories with a well-posed initial value problem, consisting in either a single self-interacting scalar, vector or both. We focus on spherically symmetric solutions, investigating the influence of self-interacting potentials into the compactness of the solutions, in particular those that allow for flat-spacetime solutions. We are able to connect such stars to hairy black hole solutions, which emerge as a zero-mass black hole. We show that such stars can have light rings, but their compactness is never parametrically close to that of black holes. The challenge of finding black hole mimickers to investigate full numerical-relativity binary setups remains open.

2018 ◽  
Vol 27 (11) ◽  
pp. 1843009 ◽  
Author(s):  
Carlos A. R. Herdeiro ◽  
Eugen Radu

We obtain spinning boson star solutions and hairy black holes with synchronized hair in the Einstein–Klein–Gordon model, wherein the scalar field is massive, complex and with a nonminimal coupling to the Ricci scalar. The existence of these hairy black holes in this model provides yet another manifestation of the universality of the synchronization mechanism to endow spinning black holes with hair. We study the variation of the physical properties of the boson stars and hairy black holes with the coupling parameter between the scalar field and the curvature, showing that they are, qualitatively, identical to those in the minimally coupled case. By discussing the conformal transformation to the Einstein frame, we argue that the solutions herein provide new rotating boson star and hairy black hole solutions in the minimally coupled theory, with a particular potential, and that no spherically symmetric hairy black hole solutions exist in the nonminimally coupled theory, under a condition of conformal regularity.


2014 ◽  
Vol 92 (1) ◽  
pp. 76-81 ◽  
Author(s):  
S.H. Hendi ◽  
B. Eslam Panah ◽  
C. Corda

We consider a class of spherically symmetric space–time to obtain some interesting solutions in F(R) gravity without matter field (pure gravity). We investigate the geometry of the solutions and find that there is an essential singularity at the origin. In addition, we show that there is an analogy between obtained solutions with the black holes of Einstein-Λ-power Maxwell invariant theory. Furthermore, we find that these solutions are equivalent to the asymptotically Lifshitz black holes. Also, we calculate d2F/dR2 to examine the Dolgov–Kawasaki stability criterion.


2021 ◽  
Vol 81 (4) ◽  
Author(s):  
Zi-Yu Tang ◽  
Bin Wang ◽  
Eleftherios Papantonopoulos

AbstractWe consider Maxwell-f(R) gravity and obtain an exact charged black hole solution with dynamic curvature in D-dimensions. Considering a spherically symmetric metric ansatz and without specifying the form of f(R) we find a general black hole solution in D-dimensions. This general black hole solution can reduce to the Reissner–Nordström (RN) black hole in D-dimensions in Einstein gravity and to the known charged black hole solutions with constant curvature in f(R) gravity. Restricting the parameters of the general solution we get polynomial solutions which reveal novel properties when compared to RN black holes. Specifically we study the solution in $$(3+1)$$ ( 3 + 1 ) -dimensions in which the form of f(R) can be solved explicitly giving a dynamic curvature and compare it with the RN black hole. We also carry out a detailed study of its thermodynamics.


2018 ◽  
Vol 15 (09) ◽  
pp. 1850154 ◽  
Author(s):  
G. G. L. Nashed

In this paper, we study the mimetic theory and derive a new spherically symmetric black hole solution. The asymptotic behavior of this solution behaves as a flat spacetime. This black hole is characterized by the fact that it has different components of [Formula: see text] and [Formula: see text]. Nevertheless, both of these components have a coinciding Killing and event horizons. Furthermore, this black hole has curvature singularities which are stronger than those of the known black hole solutions in general relativity. This feature can be shown by calculating some invariants of curvature. We study the stability of the perturbation and the related anti-evaporation of the Nariai spacetime.


2017 ◽  
Vol 26 (13) ◽  
pp. 1750151 ◽  
Author(s):  
Hao Xu ◽  
Yuan Sun ◽  
Liu Zhao

The extended phase-space thermodynamics and heat engines for static spherically symmetric black hole solutions of four-dimensional conformal gravity are studied in detail. It is argued that the equation of states (EOS) for such black holes is always branched, any continuous thermodynamical process cannot drive the system from one branch of the EOS into another branch. Meanwhile, the thermodynamical volume is bounded from above, making the black holes always super-entropic in one branch and may also be super-entropic in another branch in certain range of the temperature. The Carnot and Stirling heat engines associated to such black holes are shown to be distinct from each other. For rectangular heat engines, the efficiency always approaches zero when the rectangle becomes extremely narrow, and given the highest and lowest working temperatures fixed, there is always a maximum for the efficiency of such engines.


2015 ◽  
Vol 12 (07) ◽  
pp. 1550070 ◽  
Author(s):  
Donato Bini ◽  
Eduardo Bittencourt ◽  
Andrea Geralico ◽  
Robert T. Jantzen

A general framework is developed to investigate the properties of useful choices of stationary spacelike slicings of stationary spacetimes whose congruences of timelike orthogonal trajectories are interpreted as the world lines of an associated family of observers, the kinematical properties of which in turn may be used to geometrically characterize the original slicings. On the other hand, properties of the slicings themselves can directly characterize their utility motivated instead by other considerations like the initial value and evolution problems in the 3-plus-1 approach to general relativity. An attempt is made to categorize the various slicing conditions or "time gauges" used in the literature for the most familiar stationary spacetimes: black holes and their flat spacetime limit.


1998 ◽  
Vol 13 (08) ◽  
pp. 1305-1328 ◽  
Author(s):  
NOBUYOSHI OHTA ◽  
TAKASHI SHIMIZU

We investigate the possibility of extending nonextreme black hole solutions made of intersecting M-branes to those with two nonextreme deformation parameters, similar to Reissner–Nordstrøm solutions. General analysis of possible solutions is carried out to reduce the problem of solving field equations to a simple algebraic one for static spherically-symmetric case in D dimensions. The results are used to show that the extension to two-parameter solutions is possible for D= 4,5 dimensions but not for higher dimensions, and that the area of horizon always vanishes in the extreme limit for black hole solutions for D≥6 except for two very special cases which are identified. Various solutions are also summarized.


2019 ◽  
Vol 17 (1, spec.issue) ◽  
pp. 69-78
Author(s):  
Dejan Simic

In this article, we review two black hole solutions to the five-dimensional Lovelock gravity. These solutions are characterized by the non-vanishing torsion and the peculiar property that all their conserved charges vanish. The first solution is a spherically symmetric black hole with torsion, which also has zero entropy in the semiclassical approximation. The second solution is a black ring, which is the five-dimensional uplift of the BTZ black hole with torsion in three dimensions.


2009 ◽  
Vol 24 (10) ◽  
pp. 1901-1923
Author(s):  
ALESSIO CELI

By studying the BPS equations for electrostatic and spherically symmetric configurations in N = 2, d = 5 gauged supergravity with vector multiplets and hypermultiplets coupled, we demonstrate that no regular supersymmetric black hole solutions of this kind exist. Furthermore, we demonstrate that it is not possible to construct supersymmetric regular solitons that have the above symmetries. As a consequence the scalar flow associated to the BPS solutions is always unbounded.


2020 ◽  
Vol 80 (12) ◽  
Author(s):  
P. Bargueño ◽  
J. A. Miralles ◽  
J. A. Pons

AbstractIn this work we extend the first law of thermodynamics to spherically symmetric black hole solutions in the context of scale-dependent gravity. After deriving generalized expressions for both the entropy and energy due to the spatial variation of the gravitational constant we analize, by pointing out some relations between scale-dependent and f(R) theories, whether or not the former can be described using equilibrium thermodynamics.


Sign in / Sign up

Export Citation Format

Share Document