scholarly journals Modified gravity with disappearing cosmological constant

2021 ◽  
Vol 2021 (12) ◽  
Author(s):  
L. N. Granda

Abstract New corrections to General Relativity are considered in the context of modified f(R) gravity, that satisfy cosmological and local gravity constraints. The proposed models behave asymptotically as R − 2Λ at large curvature and show the vanishing of the cosmological constant at the flat spacetime limit. The chameleon mechanism and thin shell restrictions for local systems were analyzed, and bounds on the models were found. The steepness of the deviation parameter m at late times leads to measurable signal of scalar-tensor regime in matter perturbations, that allows to detect departures form the ΛCDM model. The theoretical results for the evolution of the weighted growth rate fσ8(z), from the proposed models, were analyzed.

Author(s):  
En-Kun Li ◽  
Minghui Du ◽  
Zhi-Huan Zhou ◽  
Hongchao Zhang ◽  
Lixin Xu

Abstract Using the fσ8(z) redshift space distortion (RSD) data, the $\sigma _8^0-\Omega _m^0$ tension is studied utilizing a parameterization of growth rate f(z) = Ωm(z)γ. Here, f(z) is derived from the expansion history H(z) which is reconstructed from the observational Hubble data applying the Gaussian Process method. It is found that different priors of H0 have great influences on the evolution curve of H(z) and the constraint of $\sigma _8^0-\Omega _m^0$. When using a larger H0 prior, the low redshifts H(z) deviate significantly from that of the ΛCDM model, which indicates that a dark energy model different from the cosmological constant can help to relax the H0 tension problem. The tension between our best-fit values of $\sigma _8^0-\Omega _m^0$ and that of the Planck 2018 ΛCDM (PLA) will disappear (less than 1σ) when taking a prior for H0 obtained from PLA. Moreover, the tension exceeds 2σ level when applying the prior H0 = 73.52 ± 1.62 km/s/Mpc resulted from the Hubble Space Telescope photometry. By comparing the $S_8 -\Omega _m^0$ planes of our method with the results from KV450+DES-Y1, we find that using our method and applying the RSD data may be helpful to break the parameter degeneracies.


2011 ◽  
Vol 01 ◽  
pp. 228-233
Author(s):  
YUNGUI GONG

The growth rate of matter perturbation and the expansion rate of the Universe can be used to distinguish modified gravity and dark energy models. Remarkably, the growth rate can be approximated as Ωγ. We discuss the dependence of the growth index γ on the dimensionless matter energy density Ω for a more accurate approximation of the growth factor. The observational data are used to fit different models. The data strongly disfavor the Dvali-Gabadadze-Porrati model. For the ΛCDM model, we find that [Formula: see text]. For the Dvali-Gabadadze-Porrati model, we find that [Formula: see text].


2021 ◽  
Vol 2021 (8) ◽  
Author(s):  
Nabamita Banerjee ◽  
Karan Fernandes ◽  
Arpita Mitra

Abstract We study the effect of electromagnetic interactions on the classical soft theorems on an asymptotically AdS background in 4 spacetime dimensions, in the limit of a small cosmological constant or equivalently a large AdS radius l. This identifies 1/l2 perturbative corrections to the known asymptotically flat spacetime leading and subleading soft factors. Our analysis is only valid to leading order in 1/l2. The leading soft factor can be expected to be universal and holds beyond tree level. This allows us to derive a 1/l2 corrected Ward identity, following the known equivalence between large gauge Ward identities and soft theorems in asymptotically flat spacetimes.


2016 ◽  
Vol 13 (05) ◽  
pp. 1650058 ◽  
Author(s):  
Gyan Prakash Singh ◽  
Binaya Kumar Bishi ◽  
Pradyumn Kumar Sahoo

In this paper, we have studied the Bianchi type-III cosmological model in the presence of cosmological constant in the context of [Formula: see text] modified theory of gravity. Here, we have discussed two classes of [Formula: see text] gravity, i.e. [Formula: see text] and [Formula: see text]. In both classes, the modified field equations are solved by the relation expansion scalar [Formula: see text] that is proportional to shear scalar [Formula: see text] which gives [Formula: see text], where [Formula: see text] and [Formula: see text] are metric potentials. Also we have discussed some physical and kinematical properties of the models.


2021 ◽  
Vol 31 (03) ◽  
pp. 2150050
Author(s):  
Demou Luo ◽  
Qiru Wang

Of concern is the global dynamics of a two-species Holling-II amensalism system with nonlinear growth rate. The existence and stability of trivial equilibrium, semi-trivial equilibria, interior equilibria and infinite singularity are studied. Under different parameters, there exist two stable equilibria which means that this model is not always globally asymptotically stable. Together with the existence of all possible equilibria and their stability, saddle connection and close orbits, we derive some conditions for transcritical bifurcation and saddle-node bifurcation. Furthermore, the global dynamics of the model is performed. Next, we incorporate Allee effect on the first species and offer a new analysis of equilibria and bifurcation discussion of the model. Finally, several numerical examples are performed to verify our theoretical results.


Universe ◽  
2018 ◽  
Vol 4 (10) ◽  
pp. 104 ◽  
Author(s):  
Rajendra Gupta

By relaxing the constraint of adiabatic universe used in most cosmological models, we have shown that the new approach provides a better fit to the supernovae Ia redshift data with a single parameter, the Hubble constant H0, than the standard ΛCDM model with two parameters, H0 and the cosmological constant Λ related density, ΩΛ. The new approach is compliant with the cosmological principle. It yields the H0 = 68.28 (±0.53) km s−1 Mpc−1 with an analytical value of the deceleration parameter q0 = −0.4. The analysis presented is for a matter-only, flat universe. The cosmological constant Λ may thus be considered as a manifestation of a nonadiabatic universe that is treated as an adiabatic universe.


2020 ◽  
Vol 634 ◽  
pp. A96
Author(s):  
E. Vickers ◽  
I. Ballai ◽  
R. Erdélyi

Aims. We investigate the nature of the magnetic Rayleigh–Taylor instability at a density interface that is permeated by an oblique homogeneous magnetic field in an incompressible limit. Methods. Using the system of linearised ideal incompressible magnetohydrodynamics equations, we derive the dispersion relation for perturbations of the contact discontinuity by imposing the necessary continuity conditions at the interface. The imaginary part of the frequency describes the growth rate of waves due to instability. The growth rate of waves is studied by numerically solving the dispersion relation. Results. The critical wavenumber at which waves become unstable, which is present for a parallel magnetic field, disappears because the magnetic field is inclined. Instead, waves are shown to be unstable for all wavenumbers. Theoretical results are applied to diagnose the structure of the magnetic field in prominence threads. When we apply our theoretical results to observed waves in prominence plumes, we obtain a wide range of field inclination angles, from 0.5° up to 30°. These results highlight the diagnostic possibilities that our study offers.


2010 ◽  
Vol 693 (4) ◽  
pp. 494-497 ◽  
Author(s):  
C. Furtado ◽  
J.R. Nascimento ◽  
A.Yu. Petrov ◽  
A.F. Santos

Sign in / Sign up

Export Citation Format

Share Document