enteroendocrine system
Recently Published Documents


TOTAL DOCUMENTS

13
(FIVE YEARS 3)

H-INDEX

5
(FIVE YEARS 1)

2021 ◽  
Author(s):  
Xinyu Zhang ◽  
Ning Ma ◽  
Wei Ling ◽  
Gaoju Pang ◽  
Tao Sun ◽  
...  

The enteroendocrine system plays an important role in metabolism. The gut microbiome regulates enteroendocrine in an extensive way, arousing attention in biomedicine. However, conventional strategies of enteroendocrine regulation via gut microbiome are usually non-specific or imprecise. Here, an optogenetic operated probiotics system was developed combining synthetic biology and flexible electronics to achieve in situ controllable secretion to mimic enteroendocrine. Firstly, optogenetic engineered Lactococcus lactis (L. lactis) were administrated in the intestinal tract. A wearable optogenetic device was designed to control optical signals remotely. Then, L. lactis could secrete enteroendocrine hormone according to optical signals. As an example, optogenetic L. lactis could secrete glucagon-like peptide-1(GLP-1) under the control of the wearable optogenetic device. To improve the half-life of GLP-1 in vivo, the Fc domain from immunoglobulin was fused. Treated with this strategy, blood glucose, weight and other features were relatively well controlled in rats and mice models. Furthermore, up-conversion microcapsules were introduced to increase the excitation wavelength of the optogenetic system for better penetrability. This strategy has biomedical potential in metabolic diseases therapy by mimicking enteroendocrine.


Author(s):  
Benjamin Crooks ◽  
Nikoleta S. Stamataki ◽  
John T. McLaughlin

The enteroendocrine system is located in the gastrointestinal (GI) tract, and makes up the largest endocrine system in the human body. Despite that, its roles and functions remain incompletely understood. Gut regulatory peptides are the main products of enteroendocrine cells, and play an integral role in the digestion and absorption of nutrients through their effect on intestinal secretions and gut motility. Several peptides, such as cholecystokinin, polypeptide YY and glucagon-like peptide-1, have traditionally been reported to suppress appetite following food intake, so-called satiety hormones. In this review, we propose that, in the healthy individual, this system to regulate appetite does not play a dominant role in normal food intake regulation, and that there is insufficient evidence to wholly link postprandial endogenous gut peptides with appetite-related behaviours. Instead, or additionally, top-down, hedonic drive and neurocognitive factors may have more of an impact on food intake. In GI disease however, supraphysiological levels of these hormones may have more of an impact on appetite regulation as well as contributing to other unpleasant abdominal symptoms, potentially as part of an innate response to injury. Further work is required to better understand the mechanisms involved in appetite control and unlock the therapeutic potential offered by the enteroendocrine system in GI disease and obesity.


2019 ◽  
Vol 63 (11) ◽  
pp. 1800912 ◽  
Author(s):  
Iris Ginés ◽  
Katherine Gil‐Cardoso ◽  
Ximena Terra ◽  
MTeresa Blay ◽  
Anna Maria Pérez‐Vendrell ◽  
...  

2018 ◽  
Vol 38 (5) ◽  
Author(s):  
Susan J. Wang ◽  
Keith A. Sharkey ◽  
Derek M. McKay

The mammalian gut is a remarkable organ: with a nervous system that rivals the spinal cord, it is the body’s largest repository of immune and endocrine cells and houses an immense and complex microbiota. Infection with helminth parasites elicits a conserved program of effector and regulatory immune responses to eradicate the worm, limit tissue damage, and return the gut to homeostasis. Discrete changes in the nervous system, and to a lesser extent the enteroendocrine system, occur following helminth infection but the importance of these adaptations in expelling the worm is poorly understood. Approximately 90% of the body’s serotonin (5-hydroxytryptamine (5-HT)) is made in enterochromaffin (EC) cells in the gut, indicative of the importance of this amine in intestinal function. Signaling via a plethora of receptor subtypes, substantial evidence illustrates that 5-HT affects immunity. A small number of studies document changes in 5-HT levels following infection with helminth parasites, but these have not been complemented by an understanding of the role of 5-HT in the host–parasite interaction. In reviewing this area, the gap in knowledge of how changes in the enteric serotonergic system affects the outcome of infection with intestinal helminths is apparent. We present this as a call-to-action by investigators in the field. We contend that neuronal EC cell–immune interactions in the gut are essential in maintaining homeostasis and, when perturbed, contribute to pathophysiology. The full affect of infection with helminth parasites needs to define, and then mechanistically dissect the role of the enteric nervous and enteroendocrine systems of the gut.


2018 ◽  
Vol 31 (2) ◽  
pp. 256-266 ◽  
Author(s):  
Shahram Niknafs ◽  
Eugeni Roura

AbstractThe anatomical structure and function of beaks, bills and tongue together with the mechanics of deglutition in birds have contributed to the development of a taste system denuded of macrostructures visible to the human naked eye. Studies in chickens and other birds have revealed that the avian taste system consists of taste buds not clustered in papillae and located mainly (60 %) in the upper palate hidden in the crevasses of the salivary ducts. That explains the long delay in the understanding of the avian taste system. However, recent studies reported 767 taste buds in the oral cavity of the chicken. Chickens appear to have an acute sense of taste allowing for the discrimination of dietary amino acids, fatty acids, sugars, quinine, Ca and salt among others. However, chickens and other birds have small repertoires of bitter taste receptors (T2R) and are missing the T1R2 (related to sweet taste in mammals). Thus, T1R2-independent mechanisms of glucose sensing might be particularly relevant in chickens. The chicken umami receptor (T1R1/T1R3) responds to amino acids such as alanine and serine (known to stimulate the umami receptor in rodents and fish). Recently, the avian nutrient chemosensory system has been found in the gastrointestinal tract and hypothalamus related to the enteroendocrine system which mediates the gut–brain dialogue relevant to the control of feed intake. Overall, the understanding of the avian taste system provides novel and robust tools to improve avian nutrition.


PLoS ONE ◽  
2017 ◽  
Vol 12 (11) ◽  
pp. e0186507 ◽  
Author(s):  
Quentin Ballouhey ◽  
Laurence Richard ◽  
Laurent Fourcade ◽  
Ines Ben Rhaiem ◽  
Jean Michel Vallat ◽  
...  

2017 ◽  
Vol 4 ◽  
pp. 2329048X1773862 ◽  
Author(s):  
David Coman ◽  
Tom Fullston ◽  
Cheryl Shoubridge ◽  
Richard Leventer ◽  
Flora Wong ◽  
...  

X-linked lissencephaly with abnormal genitalia is a rare and devastating syndrome. The authors present an infant with a multisystem phenotype where the intestinal manifestations were as life limiting as the central nervous system features. Severe chronic diarrhea resulted in failure to thrive, dehydration, electrolyte derangements, long-term hospitalization, and prompted transition to palliative care. Other multisystem manifestations included megacolon, colitis, pancreatic insufficiency hypothalamic dysfunction, hypothyroidism, and hypophosphatasia. A novel aristaless-related homeobox gene mutation, c.1136G>T/p.R379L, was identified. This case contributes to the clinical, histological, and molecular understanding of the multisystem nature of this disorder, especially the role of ARX in the development of the enteroendocrine system.


Endocrinology ◽  
2015 ◽  
Vol 156 (11) ◽  
pp. 3971-3983 ◽  
Author(s):  
Lina A. Knudsen ◽  
Natalia Petersen ◽  
Thue W. Schwartz ◽  
Kristoffer L. Egerod

Micro-RNAs (miRNAs) are crucial for many biological processes, but their role in the enteroendocrine development and differentiation has been neglected due to the elusive nature of the enteroendocrine cells. However, transgenic mice expressing fluorescent reporter proteins under the control of promoters for Cck, Gpr41, and Lgr5, ie, two different enteroendocrine markers and a marker for the stem cells, now enables identification and FACS purification of enteroendocrine cells at different stages of their differentiation along the crypt-villus axis. Surprisingly few of the 746 analyzed miRNAs differed in their expression pattern between enteroendocrine and nonenteroendocrine cells of the gut mucosa and between enteroendocrine cells of the crypt versus the villus. Thus, only let-7g-3p, miR-7b-5p (miR-7b), and miR-375–3p (miR-375) were up-regulated in the enteroendocrine cells of both the crypt and villus compared with nonenteroendocrine cells, and in situ hybridization confirmed colocalization of miR-375 with the enteroendocrine cells. Finally, functional assays using miR-375 inhibitor and mimetic in organoid cultures revealed miR-375 as a potential regulator of the enteroendocrine lineage. Overexpression of miR-375 inhibited enteroendocrine lineage development, whereas inhibition of miR-375 stimulated the development of enteroendocrine cells in vitro. Thus, through an unbiased expression screening of all miRNA, we find very few miRNAs that are differentially expressed in the gastrointestinal mucosa. Of these, miR-375 is found to be both highly expressed and enriched in the enteroendocrine cells. Additionally, miR-375 appears to negatively regulate the development of enteroendocrine cells. Consequently, miR-375 emerges as a potential target to modulate the function of the enteroendocrine system.


2015 ◽  
Vol 57 (2) ◽  
pp. 326-334 ◽  
Author(s):  
Montserrat Pinent ◽  
Mayte Blay ◽  
Joan Serrano ◽  
Anna Ardévol

Sign in / Sign up

Export Citation Format

Share Document