Effect of hub clearance size and shape of a cantilevered stator on the performance of a small-scale transonic axial compressor

Author(s):  
Botao Zhang ◽  
Bo Liu ◽  
Xiaochen Mao ◽  
Xiaoxiong Wu ◽  
Hejian Wang

To deeply understand the hub leakage flow and its influence on the aerodynamic performance and flow behaviors of a small-scale transonic axial compressor, variations of the performance and the flow field of the compressor with different hub clearance sizes and clearance shapes were numerically analyzed. The results indicate that the hub clearance size has remarkable impacts on the overall performance of the compressor. With the increase of the hub clearance, the intensity of the hub leakage flow increases, resulting in more intense flow blockage near the stator hub, which reduces the compressor efficiency. However, the flow field near the blade mid-span is modified due to the more convergent flow as the reduced effective flow area caused by the passage blockage, and the flow separation range is narrowed, thus the flow stability of the compressor is enhanced. On this basis, two kinds of non-uniform clearance cases of expanding clearance and shrinking clearance with the same circumferential leakage area as the design clearance were investigated. The occurrence position of the double leakage flow which is closely connected with the flow loss and blockage is shifted backward by the expanding clearance, the flow capacity near the stator hub is enhanced, and the unsteady fluctuation intensity of the flow field is attenuated but fluctuation frequency remains. Similarly, the modification of the stator blade root flow field may result in the reduction of stall margin. The effect of the shrinking clearance on compressor performance is opposite to that of the expanding clearance, which reduces the peak efficiency and delays the stall inception.

Author(s):  
Chengwu Yang ◽  
Xingen Lu ◽  
Yanfeng Zhang ◽  
Shengfeng Zhao ◽  
Junqiang Zhu

The clearance size of cantilevered stators affects the performance and stability of axial compressors significantly. Numerical calculations were carried out using the commercial software FINE/Turbo for a 2.5-stage highly loaded transonic axial compressor, which is of cantilevered stator for the first stage, at varying hub clearance sizes. The aim of this work is to improve understanding of the impact mechanism of hub clearance on the performance and the flow field in high flow turning conditions. The performance of the front stage and the compressor with different hub clearance sizes of the first stator has been analyzed firstly. Results show that the efficiency decreases as clearance size varies from 0 to 3% of hub chordlength, but the operating range has been extended. For the first stage, the efficiency decreases about 0.5% and the stall margin is extended. The following analysis of detailed flow field in the first stator shows that the clearance leakage flow and elimination of hub corner separation is responsible for the increasing loss and stall margin extending respectively. The effects of hub clearance on the downstream rotor have been discussed lastly. It indicates that the loss of the rotor increases and the flow deteriorates due to increasing of clearance size and hence the leakage mass flow rate, which mainly results from the interaction of upstream leakage flow with the passage flow near pressure surface. The affected region of rotor passage flow field expands in spanwise and streamwise direction as clearance size grows. The hub clearance leakage flow moves upward in span as it flows toward downstream.


Author(s):  
Limin Gao ◽  
Ruiyu Li ◽  
Fang Miao ◽  
Yutong Cai

Contra-rotating axial compressor/fan (CRAC) is a promising technology to meet the future goals aircraft industry. Massive time accurate simulations are performed to investigate rotating stall in CRAC containing two counter-rotating rotors. Particularly, the back pressure increasing with a very small step to avoid missing flow field transition from stability to instability. Due to the canceling of the stator, the instability of downstream rotor is more stronger. The present studies mostly focus on the downstream rotor. The tip leakage flow field is analyzed in detail under near stall condition, which indicates that a secondary leakage flow plays an important role in the unsteadiness of CRAC's unsteady flow field. The frequency analysis in the tip clearance of downstream rotor under multiple near stall conditions captured the transition of the second harmonic frequency which can be used as stall inception signal. Moreover, the rotating stall onset process in real CRAC is simulated on the numerical stall.


Author(s):  
Seishiro Saito ◽  
Masato Furukawa ◽  
Kazutoyo Yamada ◽  
Keisuke Watanabe ◽  
Akinori Matsuoka ◽  
...  

Abstract Flow structure and flow loss generation in a transonic axial compressor has been numerically investigated by using a large-scale detached eddy simulation (DES). The data mining techniques, which include a vortex identification based on the critical point theory and a limiting streamline visualization with the line integral convolution (LIC) method, were applied to the DES result in order to analyze the complicated flow field in compressor. The flow loss in unsteady flow field was evaluated by entropy production rate, and the loss mechanism and the loss amount of each flow phenomenon were investigated for the first rotor and the first stator. In the first rotor, a shock-induced separation is caused by the detached shock wave and the passage shock wave. On the hub side, a hub-corner separation occurs due to the secondary flow on the hub surface, and a hub-corner separation vortex is clearly formed. The flow loss is mainly caused by the blade boundary layer and wake, and the loss due to the shock wave is very small, only about 1 percent of the total loss amount in the first rotor. However, the shock/boundary layer interaction causes an additional loss in the blade boundary layer and the wake, which amount reaches to about 30 percent of the total. In the first stator, the hub-corner separation occurs on the suction side. Although only one hub-corner separation vortex is formed in the averaged flow field, the hub-corner separation vortex is generated in multiple pieces and those pieces interfere with each other in an instantaneous flow field. The hub-corner separation generates huge loss over a wide range, however, the loss generation around the hub-corner separation vortex is not so large, and the flow loss is mainly produced in the shear layer between the mainstream region and the separation region. The main factors of loss generation are the boundary layer, wake and hub-corner separation, which account for about 80 percent of the total loss amount in the first stator.


Author(s):  
Chaoqun Nie ◽  
Jingyi Chen ◽  
Xingmin Gui ◽  
Qing Yu ◽  
Tongqing Wang

The unsteady transition characteristics of rotating stall have been studied experimentally in a single-stage transonic axial compressor. Three tested conditions in the near design and below design speed range, at tip relative Mach numbers from 1.26 to 1.0, were performed. The characteristics of rotating stall were studied by its dynamic behavior on the scale of compressor circumference and also by the flow field details in the blade passage. The dynamic behavior was analyzed by the technique of successive frequency spectrum and the flow field details were studied through internal transient pressure patterns in the blade passage plotted by the dynamic pressure data measured on the compressor shroud. It has been shown that intermittent pre-stall perturbations are evident for all the tested speeds and distinct by the different time and length scale of their existence. These are also interpreted by the difference of pressure loading and shock structure visualized in the pressure plots in the blade passage during stall inception. The pre-stall perturbations, with rather scattered frequency spectra, grow into fully developed stall abruptly. Nevertheless, the frequency spectrum of rotating stall falls into constant fraction of the frequency of compressor rotation for all the tested conditions. The increasing trend of the amplitude of pressure oscillation of rotating stall while gathering at its frequency spectrum could be detected in the stage of stall inception. Based on these two observations, there is a possibility of warning the stall precursors even for the high speed transonic compressor like the one tested in this paper.


Author(s):  
Shraman Goswami ◽  
Ashima Malhotra

Abstract Performance of an axial compressor rotor depends largely on the tip leakage flow. Tip leakage flow results in tip leakage vortex which is a source of loss. This has an impact on the compressor efficiency as well as stall margin. A lot of work has been done to understand the tip leakage flow and controlling the same. Active and passive stall margin improvement methods mainly target the tip leakage vortex. In the current study, numerical investigations are carried out to understand flow fields near tip region of rotors. The blade tip designed to have a tip gap as sine and cosine waves (single and double waves). Numerical methodology is validated with NASA Rotor37 test results. The performance parameters of the rotors with modified tip gap shapes are compared with constant tip clearance rotor. A detailed flow field investigation is presented to compare the tip flow structure and its impact on overall performance of the compressor.


Author(s):  
Mingming Zhang ◽  
Anping Hou

This paper applies a numerical approach to improve the understanding of reaction to various inflow conditions for the compressor system and the mechanism of stall inception under rotating inflow distortions. Full annulus, unsteady, three-dimensional computational fluid dynamics has been used to simulate an axial low-speed compressor operating under rotating distorted inflow conditions. The development of the flow through the rotor is then explained in terms of the redistribution of the flow field and the process of stall inception. The results suggest that the increased flow incidence close to the tip region under co-rotating inflow distortion plays an important role on the stall inception process. The presence of a strong modal wave is observed under co-rotating inflow distortions. This leads to a significant impact on the loss of stall margin, as compared with other distorted inflow conditions. There is a significant peak in the flow coefficient at stall for co-rotating inlet distortion. It can be interpreted as a resonant behavior of the compressor under a strong interaction between the flow field and inlet distortion. It indicates that the stall inception is triggered by the perturbation of the rotating distorted inflow through the long length scale disturbances.


Author(s):  
Seishiro Saito ◽  
Masato Furukawa ◽  
Kazutoyo Yamada ◽  
Yuki Tamura ◽  
Akinori Matsuoka ◽  
...  

In this study, the hub-corner separation in a multi-stage transonic axial compressor has been investigated using a large-scale detached eddy simulation (DES) with about 4.5 hundred million computational cells. The complicated flow field near the hub wall in a stator with partial tip clearances was analyzed by data mining techniques extracting important flow phenomena from the DES results. The data mining techniques applied in the present study include vortex identification based on the critical point theory and topological data analysis of the limiting streamline pattern visualized by the line integral convolution (LIC) method. It is found from the time-averaged flow field in the first stator that the hub-corner separation vortex formed near the solid part of the stator tip interacts with the leakage flow and secondary flow on the hub wall, resulting in a complicated vortical flow field. Near the leading edge of the stator, the leakage flow from the front partial clearance generates the tip leakage vortex, which produces loss from the leading edge to 10 percent chord position. At the mid-chord, the hub-corner separation vortex suffers a breakdown, resulting in the widespread huge loss production. It is shown from limiting streamlines on the suction surface of the stator that a reverse flow region expands radially from the solid part of the stator tip toward the downstream. From 50 percent chord position to the trailing edge of the stator, the leakage flow through the rear partial clearance interacts with the secondary flow on the hub wall. The leakage vortex generated along the rear partial clearance becomes a major loss factor there.


Author(s):  
Yanfei Gao ◽  
Yangwei Liu ◽  
Luyang Zhong ◽  
Jiexuan Hou ◽  
Lipeng Lu

AbstractThe standard k-ε model (SKE) and the Reynolds stress model (RSM) are employed to predict the tip leakage flow (TLF) in a low-speed large-scale axial compressor rotor. Then, a new research method is adopted to “freeze” the turbulent kinetic energy and dissipation rate of the flow field derived from the RSM, and obtain the turbulent viscosity using the Boussinesq hypothesis. The Reynolds stresses and mean flow field computed on the basis of the frozen viscosity are compared with the results of the SKE and the RSM. The flow field in the tip region based on the frozen viscosity is more similar to the results of the RSM than those of the SKE, although certain differences can be observed. This finding indicates that the non-equilibrium turbulence transport nature plays an important role in predicting the TLF, as well as the turbulence anisotropy.


Author(s):  
Rubén Bruno Díaz ◽  
Jesuino Takachi Tomita ◽  
Cleverson Bringhenti ◽  
Francisco Carlos Elizio de Paula ◽  
Luiz Henrique Lindquist Whitacker

Abstract Numerical simulations were carried out with the purpose of investigating the effect of applying circumferential grooves at axial compressor casing passive wall treatment to enhance the stall margin and change the tip leakage flow. The tip leakage flow is pointed out as one of the main contributors to stall inception in axial compressors. Hence, it is of major importance to treat appropriately the flow in this region. Circumferential grooves have shown a good performance in enhancing the stall margin in previous researches by changing the flow path in the tip clearance region. In this work, a passive wall treatment with four circumferential grooves was applied in the transonic axial compressor NASA Rotor 37. Its effect on the axial compressor performance and the flow in the tip clearance region was analyzed and set against the results attained for the smooth wall case. A 2.63% increase in the operational range of the axial compressor running at 100%N, was achieved, when compared with the original smooth wall casing configuration. The grooves installed at compressor casing, causes an increase in the flow entropy generation due to the high viscous effects in this gap region, between the rotor tip surface and casing with grooves. These viscous effects cause a drop in the turbomachine efficiency. For the grooves configurations used in this work, an efficiency drop of 0.7% was observed, compared with the original smooth wall. All the simulations were performed based on 3D turbulent flow calculations using Reynolds Averaged Navier-Stokes equations, and the flow eddy viscosity was determined using the two-equation SST turbulence model. The details of the grooves geometrical dimensions and its implementation are described in the paper.


Sign in / Sign up

Export Citation Format

Share Document