scholarly journals Accelerated Methods of Determining Wheat Genotypes Primary Resistance to Extreme Temperatures

2021 ◽  
Author(s):  
Alexandru Dascaliuc

Several morphological and functional mechanisms determine the resistance of plants to extreme temperatures. Depending on the specificity of mechanisms of action, we divided them into two groups: (1) the mechanisms that ensure the avoidance/reduction of the exposure dose; (2) functional mechanisms which increase plant resistance and ability to recover damages caused by stress through regulation metabolic and genes expression activity. We developed theoretical and practical methods to appreciate the contribution of parameters from both groups on the primary and adaptive resistance of different wheat genotypes. This problem became more complicated because some properties are epigenetically inherited and can influence genotypes’ primary (initial) resistance to stressors. The article describes results obtained by the accelerated determination of the initial resistance of wheat (Triticum aestivum L.) genotypes to temperature stress and the prospects for their implementation in the selection and development of methods for rational choosing wheat varieties for cultivation under specific environmental conditions.

2021 ◽  
Author(s):  
Natalia Jelev ◽  
◽  
Nina Zdioruk ◽  
Alexandru Dascaliuc ◽  
Iaroslav Parii ◽  
...  

The primary resistance and plasticity of the response to shock with negative temperatures (SNT) or heat shock (HS) of different winter wheat genotypes grown in Ukraine and then reproduced in Moldo-va are determined. The values of the mentioned parameters specifically varied depended on the genotype specificity and conditions of seeds reproduction. Thus, data support the hypothesis about the specificity of trans-generational inheritance of wheat genotypes adaptations to extreme temperatures. Furthermore, the correlation coefficient between the resistance SNT value to HS and inversed value (HS/SNT) ratio may indicate the epigenetically inherited effects.


2021 ◽  
Author(s):  
Ayesha Mushtaq ◽  
Nazish Sabir ◽  
Tasneem Kousar ◽  
Sabeena Rizwan ◽  
Uzma Jabeen ◽  
...  

Abstract Purpose Salinity pose severe threat to cultivation as it drastically affects the plant sustainability and yield. The intended aim of current consensus is to assess effects of sodium silicate and salicylic acid on wheat genotypes (slat tolerant and salt sensitive) grown under salt. Methods This experiment was designed to check the effect of silicon on wheat varieties, so four different wheat genotypes named as (Umeed, Rasco, Zarghoon and Shahkaar) were grown in hydroponics under saline and normal environment. Sodium silicate and salicylic acid were applied on all varieties to determine the slat tolerance ability. Plants were harvested at maturity and different physical and chemical aspects were recorded. Results To assess the salt stress on growth and yield of wheat genotypes. Wheat grown in saline conditions with sodium silicate supplementation showed improvement in all growth parameters as compared to the plants grown under salt stress without silicon supplementation. Higher contents of potassium were observed in plants grown under salt stress with silicon supplementation however, potassium concentration was found less in salicylic acid treatment and control under salt stress. Sodium concentration was found higher under salt stress but sodium silicate application reduced Na+ uptake under salt stress. Significance increase in K+ : Na+ ratio in roots enhance the translocation which in turn elevates salt tolerance ability. Among wheat varieties potassium uptake was quite high in Umeed and Rasco as compared to Zarghoon and Shahkar. Conclusion Based on current results it can be deduced that application of sodium silicate on different wheat varieties mitigated Na+ toxicity by elevating K+: Na+ ratio and net translocation rate in salt stressed plants.


2021 ◽  
Vol 7 (10) ◽  
pp. 45-56
Author(s):  
T. Tamrazov

Drought stress is the most important factor and an increasingly serious problem limiting the growth of wheat (Triticum aestivum L. / Triticum durum) in the world. Wheat possesses physiological mechanisms that allow it to adapt to the stress of drought and can vary depending on the genotype. The studies were carried out on wheat genotypes at the Absheron Experimental Base Station of the Azerbaijan Scientific Research Institute of Crop Husbandry. The experiment was designed in a factorial design with two treatments (irrigated and non-irrigated) and three repetitions during the 2020–2021 harvest season. Analysis of variance revealed significant differences between treatments and between varieties. The treatment × cultivar interaction was also significant for all traits, with the exception of grain per plant yield. Significant interactions showed that varieties performed differently under stressful conditions, but consistently with respect to grain yield. The studied varieties Giymatly-2/17, Gunashly and Tale-38 showed a minimal decrease in physiological characteristics, as well as in yield characteristics under stress during flowering, however, a decrease from low to high was observed under stress conditions compared with no stress. Correlations between morphological, physiological, and morphophysiological traits such as plant height, number of grains per ear, seed index, grain yield per plant, yield index, relative water content, stomatal conductance, leaf area and ear fertility have generally been reliable indicators for screening for drought tolerant wheat varieties and potentially higher yields. In addition, it is observed that improvement in any of these traits will lead to an increase in grain yield under water stress conditions.


2020 ◽  
Vol 5 (2) ◽  
pp. 66
Author(s):  
Muhammad Kadir ◽  
Kaimuddin Kaimuddin ◽  
Yunus Musa ◽  
Muh Farid Badaruddin ◽  
Amin Nur

Abiotic factors, such as temperature and drought, are the main factors limiting the cultivation under the tropical condition. Two-stage experiments were conducted to examine the drought-tolerant potential of some wheat genotypes against the osmotic stress under the tropical condition at the Laboratory and Greenhouse of Hasanuddin University and Indonesian Cereal Research Institute. The experiments were arranged in a randomized block design with the split-plot pattern and respectively provided with four and three replications. The main plot was potential osmotic stress (0, -0. 33 , and -0.67 MPa) and the sub-plot was selected wheat genotypes (17 genotypes). The results indicates that based on the germination percentage, shoot/root ratio, proline content, stomatal behavior, and relative water content, the wheat lines of O/HP-78-A22-3-7, WBLL*2KURUKU, O/HP-6-A8-2-10, and O/HP-22-A27-1-10 are identified to have better drought-tolerance than the others genotypes based on the analysis of responses to parameters observed. The positively adaptive response of some tropical wheat genotypes to drought stress may be used as a potential donor for further development of drought-tolerant wheat varieties under the tropical climate in Indonesia. 


2018 ◽  
Vol 3 (1) ◽  
pp. 404-413 ◽  
Author(s):  
Akbar Hossain ◽  
M. Farhad ◽  
M.A.H.S. Jahan ◽  
M. Golam Mahboob ◽  
Jagadish Timsina ◽  
...  

Abstract It is important to identify and develop stable wheat varieties that can grow under heat stress. This important issue was addressed in Bangladesh using six wheat genotypes, including three existing elite cultivars (‘BARI Gom 26’, ‘BARI Gom 27’, ‘BARI Gom 28’) and three advanced lines (‘BAW 1130’, ‘BAW 1138’, ‘BAW 1140’). Six sowing dates, namely early sowing (ES) (10 November), optimum sowing (OS) (20 November), slightly late sowing (SLS) (30 November), late sowing (LS) (10 December), very late sowing (VLS) (20 December) and extremely late sowing (ELS) (30 December) were assessed over two years in four locations, representative of the diversity in Bangladesh’s agro-ecological zones. In a split plot design, sowing dates were allocated as main plots and genotypes as subplots. A GGE biplot analysis was applied to identify heat tolerance and to select and recommend genotypes for cultivation in heat-prone zones. All tested genotypes gave greatest grain yield (GY) after OS, followed by SLS, ES and LS, while VLS and ELS gave smallest GY. When GY and the correlations between GY and stress tolerance indices were considered, ‘BAW 1140’, ‘BARI Gom 28’ and ‘BARI Gom26’ performed best under heat stress, regardless of location or sowing date. In contrast, ‘BARI Gom 27’ and ‘BAW 1130’ were susceptible to heat stress in all locations in both years. Ranking of genotypes and environments using GGE biplot analysis for yield stability showed ‘BAW1140’ to be most stable, followed by ‘BARI Gom 28’ and ‘BARI Gom 26’. Wheat sown on November 20 resulted in highest GY but that sown on December 30 resulted in lowest GY in both years. In conclusion, ‘BAW 1140’, ‘BARI Gom 28’ and ‘BARI Gom 26’ are the recommended wheat genotypes for use under prevailing conditions in Bangladesh.


Agric ◽  
2017 ◽  
Vol 28 (1) ◽  
pp. 95
Author(s):  
Theresa Dwi Kurnia ◽  
Nugraheni Widyawati ◽  
Djoko Murdono ◽  
Endang Pudjihartati

<p>ABSTRACT</p><p>Development of tropical wheat that suitable to low altitude is important in Indonesia. Aims of the research was to determine agronomic traits and select of wheat genotypes adaptive to tropical lowland. Three years study was conducted by planting ten wheat genotypes in Tlogoweru village, Guntur Subdistrict, Demak, Central Java at the altitude + 20 meters above sea level, from 2013 to 2015. From ten wheat genotypes planted in 2013, five wheat genotypes were considered adaptive, i.e., ALTAR, BASRIBEY, LAJ3302, OASIS and SELAYAR. In 2014 four genotypes were selected, they are ALTAR, BASRIBEY, LAJ3302 and OASIS. Finnaly, in 2015 genotype ALTAR was prominent candidate for the lowland tropical wheat varieties in study site. Among genotypes ALTAR had highest plant height, seed weight per panicle, number of seeds per panicle, number of productive tillers and yield estimates.</p>


2016 ◽  
Vol 1 ◽  
pp. 33-36
Author(s):  
Rudra Bhattarai ◽  
Bedanand Chaudhary ◽  
Dhruba Bahadur Thapa ◽  
Ramesh Raj Puri ◽  
Ram Nath Chaudhary ◽  
...  

Wheat (Triticum aestivum L.) is one of the major cereal crops and staple food sources in Nepal. Wheat varieties being popular in mid hill regions are still in the early stages of adoption. Identification of appropriate date of seeding plays important role in enhancing the adoption rate ensuring the sustainable production. Therefore, three dates viz 15th November, 1st and 15th December for seeding and twenty eight wheat genotypes were evaluated in a split plot design with two replications for two consecutive seasons in 2011/12 and 2012/13 at an altitude of 2200 masl of eastern Nepal. The results showed genetic differences and interaction effect of genotypes with the dates of sowing on grain yield, panicle length and effective tillers per square meter. The wheat sown on 1st December showed the highest yield as compared to other sown dates. Similarly, WK1907, WK1911, WK1803, WK1915, WK1909, WK1714 and WK1803 produced highest yield among the tested genotypes with retaining maximum number of effective tillers and posed suitable maturity across all sowing date.Journal of Nepal Agricultural Research Council Vol.1 2015 pp.33-36


2021 ◽  
pp. 119-126
Author(s):  
Naila Gandahi ◽  
Abdul Wahid Baloch ◽  
Mir Yar Muhammad Khan Talpur ◽  
Nasreen Fatima ◽  
Tanweer Fatah Abro ◽  
...  

The present study was designed to assess genetic divergence between commercial bread wheat genotypes based on yield and its related traits and to carry out phenotypic correlation. Twenty bread hexaploid wheat varieties were assessed for mean performance, correlation analysis and genetic distance. Randomized complete block design was used with three replications during growing season, 2018-2019 at Wheat and Barley Research Institute, Tandojam. The mean squares depicted significant differences (P<0.01) for all the investigated traits among the tested genotypes, proving that used genetic resources possess a great potential for further breeding experiments. Regarding mean performance, the genotypes Sassui and TD-1 displayed desirable performance for a variety of traits, unveiling their importance in wheat breeding programs. The results also showed that tillers plant-1, grains spike-1 and seed index developed significantly positive (P<0.05) interrelationship with grain yield plant-1. This demonstrates that genotypes possessing higher extent of these traits may be chosen in selection for developing high yielding bread wheat genotypes. The larger genetic distance was witnessed between Johar-78 and TD-1, followed by SKD-1 and TJ-83, SKD-1 and Mehran-89, SKD-1 and Johar-78, TD-1 and Khirman, TJ-83 and Imdad-05, Mehran-89 and TD-1 and Johar-78 and TJ-83. These paired showed wide genetic distances, which may also be preferred in wheat hybridization program. Keywords: Genetic distance, hexaploid wheat, morphological traits, trait


2021 ◽  
pp. 1-8
Author(s):  
Deep Shikha ◽  
Chandani Latwal ◽  
Elangbam Premabati Devi ◽  
Anupama Singh ◽  
Pawan K. Singh ◽  
...  

Abstract Genetic resources are of paramount importance for developing improved crop varieties, particularly for biotic and abiotic stress tolerance. Spot blotch (SB) is a destructive foliar disease of wheat prevalent in warm and humid regions of the world, especially in the eastern parts of South Asia. For the management of this disease, the most effective measure is the development of resistant cultivars. Thus, the present investigation was carried out to confirm SB resistance in 200 germplasm accessions based on phenotypic observations and molecular characterization. These elite breeding lines obtained from the International Centre for Maize and Wheat Improvement, Mexico, are developed deploying multiple parentages. These lines were screened for SB resistance in the field under artificially created epiphytotic conditions during 2014–15 and 2015–16 along with two susceptible checks (CIANO T79 and Sonalika) and two resistant checks (Chirya 3 and Francolin). Eighty-two out of 200 germplasm accessions were found resistant to SB and resistance in these lines was confirmed with a specific SSR marker Xgwm148. Three accessions, VORONA/CNO79, KAUZ*3//DOVE/BUC and JUP/BJY//URES/3/HD2206/HORK//BUC/BUL were observed possessing better resistance than the well-known SB-resistant genotype Chirya3. These newly identified resistant lines could be used by wheat breeders for developing SB-resistant wheat varieties.


2021 ◽  
Vol 22 (10) ◽  
pp. 5314
Author(s):  
Marlon-Schylor L. le Roux ◽  
Nicolas Francois V. Burger ◽  
Maré Vlok ◽  
Karl J. Kunert ◽  
Christopher A. Cullis ◽  
...  

Drought response in wheat is considered a highly complex process, since it is a multigenic trait; nevertheless, breeding programs are continuously searching for new wheat varieties with characteristics for drought tolerance. In a previous study, we demonstrated the effectiveness of a mutant known as RYNO3936 that could survive 14 days without water. In this study, we reveal another mutant known as BIG8-1 that can endure severe water deficit stress (21 days without water) with superior drought response characteristics. Phenotypically, the mutant plants had broader leaves, including a densely packed fibrous root architecture that was not visible in the WT parent plants. During mild (day 7) drought stress, the mutant could maintain its relative water content, chlorophyll content, maximum quantum yield of PSII (Fv/Fm) and stomatal conductance, with no phenotypic symptoms such as wilting or senescence despite a decrease in soil moisture content. It was only during moderate (day 14) and severe (day 21) water deficit stress that a decline in those variables was evident. Furthermore, the mutant plants also displayed a unique preservation of metabolic activity, which was confirmed by assessing the accumulation of free amino acids and increase of antioxidative enzymes (peroxidases and glutathione S-transferase). Proteome reshuffling was also observed, allowing slow degradation of essential proteins such as RuBisCO during water deficit stress. The LC-MS/MS data revealed a high abundance of proteins involved in energy and photosynthesis under well-watered conditions, particularly Serpin-Z2A and Z2B, SGT1 and Calnexin-like protein. However, after 21 days of water stress, the mutants expressed ABC transporter permeases and xylanase inhibitor protein, which are involved in the transport of amino acids and protecting cells, respectively. This study characterizes a new mutant BIG8-1 with drought-tolerant characteristics suited for breeding programs.


Sign in / Sign up

Export Citation Format

Share Document