scholarly journals Asiatic Acid Prevents Cognitive Deficits by Inhibiting Calpain Activation and Preserving Synaptic and Mitochondrial Function in Rats with Kainic Acid-Induced Seizure

Biomedicines ◽  
2021 ◽  
Vol 9 (3) ◽  
pp. 284
Author(s):  
Cheng-Wei Lu ◽  
Tzu-Yu Lin ◽  
Tai-Long Pan ◽  
Pei-Wen Wang ◽  
Kuan-Ming Chiu ◽  
...  

Cognitive impairment is not only associated with seizures but also reported as an adverse effect of antiepileptic drugs. Thus, new molecules that can ameliorate seizures and maintain satisfactory cognitive function should be developed. The antiepileptic potential of asiatic acid, a triterpene derived from the medicinal herb Centella asiatica, has already been demonstrated; however, its role in epilepsy-related cognitive deficits is yet to be determined. In this study, we evaluated the effects of asiatic acid on cognitive deficits in rats with kainic acid (KA)-induced seizure and explored the potential mechanisms underlying these effects. Our results revealed that asiatic acid administrated intraperitoneally 30 min prior to KA (15 mg/kg) injection ameliorated seizures and significantly improved KA-induced memory deficits, as demonstrated by the results of the Morris water maze test. In addition, asiatic acid ameliorated neuronal damage, inhibited calpain activation, and increased protein kinase B (AKT) activation in the hippocampus of KA-treated rats. Asiatic acid also increased the levels of synaptic proteins and the number of synaptic vesicles as well as attenuated mitochondrial morphology damage in the hippocampus of KA-treated rats. Furthermore, proteomic and Western blot analyses of hippocampal synaptosomes revealed that asiatic acid reversed KA-induced changes in mitochondria function-associated proteins, including lipoamide dehydrogenase, glutamate dehydrogenase 1 (GLUD1), ATP synthase (ATP5A), and mitochondrial deacetylase sirtuin-3 (SIRT3). Our data suggest that asiatic acid can prevent seizures and improve cognitive impairment in KA-treated rats by reducing hippocampal neuronal damage through the inhibition of calpain activation and the elevation of activated AKT, coupled with an increase in synaptic and mitochondrial function.

2019 ◽  
Vol 16 (8) ◽  
pp. 710-722 ◽  
Author(s):  
Xiao-Ying Sun ◽  
Quan-Xiu Dong ◽  
Jie Zhu ◽  
Xun Sun ◽  
Li-Fan Zhang ◽  
...  

Background: Alzheimer’s Disease (AD) is characterized by the presence of extracellular amyloid-β (Aβ) plaques and intraneuronal neurofibrillary tangles assembled by the microtubuleassociated protein tau. Increasing evidence demonstrated that tau pathology played an important role in AD progression. Resveratrol (RSV) has previously proved to exert neuroprotective effect against AD by inhibiting Aβ generation and Aβ-induced neurocytotoxicity, while its effect on tau pathology is still unknown. Method: The effect of RSV on tau aggregation was measured by Thioflavin T fluorescence and Transmission electron microscope imaging. The effect of RSV on tau oligomer-induced cytotoxicity was assessed by MTT assay and the uptake of extracellular tau by N2a cells was determined by immunocytochemistry. 6-month-old male PS19 mice were treated with RSV or vehicle by oral administration (gavage) once a day for 5 weeks. The cognitive performance was determined using Morris water maze test, object recognition test and Y-maze test. The levels of phosphorylated-tau, gliosis, proinflammatory cytokines such as TNF-α and IL-1β, and synaptic proteins including synaptophysin and PSD95 in the brains of the mice were evaluated by immunoblotting, immunostaining and ELISA, respectively. Results: RSV significantly inhibited tau aggregation and tau oligomer-induced cytotoxicity, and blocked the uptake of extracellular tau oligomers by N2a cells. When applied to PS19 mice, RSV treatment effectively rescued cognitive deficits, reducing the levels of phosphorylated tau, neuroinflammation and synapse loss in the brains of mice. Conclusion: These findings suggest that RSV has promising therapeutic potential for AD and other tauopathies.


2015 ◽  
Vol 2015 ◽  
pp. 1-7 ◽  
Author(s):  
Zhong-he Liu ◽  
Hong-guang Chen ◽  
Pan-feng Wu ◽  
Qing Yao ◽  
Hong-ke Cheng ◽  
...  

Objective. The effects of Flos Puerariae extract (FPE) on cognitive impairment associated with diabetes were assessed in C57BL/6J mice.Methods. Experimental diabetic mice model was induced by one injection of 50 mg/kg streptozotocin (STZ) for 5 days consecutively. FPE was orally administrated at the dosages of 50, 100, or 200 mg/kg/day, respectively. The learning and memory ability was assessed by Morris water maze test. Body weight, blood glucose, free fatty acid (FFA) and total cholesterol (TCH) in serum, malondialdehyde (MDA), superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GSH-Px), and acetylcholinesterase (AChE) activities in cerebral cortex and hippocampus were also measured.Results. Oral administration of FPE significantly improved cognitive deficits in STZ-induced diabetic mice. FPE treatment also maintained body weight and ameliorated hyperglycemia and dyslipidemia in diabetic mice. Additionally, decreased MDA level, enhanced CAT, and GSH-Px activities in cerebral cortex or hippocampus, as well as alleviated AChE activity in cerebral cortex, were found in diabetic mice supplemented with FPE.Conclusion. This study suggests that FPE ameliorates memory deficits in experimental diabetic mice, at least partly through the normalization of metabolic abnormalities, ameliorated oxidative stress, and AChE activity in brain.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Zhenghui Qin ◽  
Chenliang Zhou ◽  
Xiaochan Xiao ◽  
Cuiping Guo

Abstract Background Sepsis is considered to be a high-risk factor for cognitive impairment in the brain. The purpose of our study is to explore whether sepsis causes cognitive impairment and try to evaluate the underlying mechanisms and intervention measures. Methods Here, we used cecum ligation and puncture (CLP) to simulate sepsis. Open field, Novel Objective Recognition, and Morris Water Maze Test were used to detect cognitive function, long-term potentiation was used to assess of synaptic plasticity, and molecular biological technics were used to assess synaptic proteins, ELISA kits were used to detect inflammatory factors. Metformin was injected into the lateral ventricle of SD rats, and we evaluated whether metformin alleviated CLP-mediated cognitive impairment using behavioral, electrophysiological and molecular biological technology experiments. Results Here we report hippocampal-dependent cognitive deficits and synaptic dysfunction induced by the CLP, accompanied by a significant increase in inflammatory factors. At the same time, metformin was able to improve cognitive impairment induced by CLP in adult male rats. Conclusion These findings highlight a novel pathogenic mechanism of sepsis-related cognitive impairment through activation of inflammatory factors, and these are blocked by metformin to attenuate sepsis-induced neuronal injury and cognitive impairment.


2012 ◽  
Vol 30 (4) ◽  
pp. 339-345 ◽  
Author(s):  
Guomin Li ◽  
Xuezhu Zhang ◽  
Haiyan Cheng ◽  
Xuemei Shang ◽  
Hui Xie ◽  
...  

Objectives To examine whether acupuncture could improve cognitive deficits and reduce the loss of neurons in mice models of ageing. Methods Male 7.5-month-old senescence-accelerated mouse prone 8 (SAMP8) and age-matched senescence-resistant inbred strains 1 (SAMR1) were divided into four groups (n=15 per group): SAMP8 acupuncture group (Pa), SAMP8 non-acupuncture point control group (Pn), SAMP8 control group (Pc) and SAMR1 normal control group (Rc). The behaviours were examined by the Morris water maze test and the neuron density in the hippocampus was estimated by the optical fractionator technique. Results The Morris water maze test demonstrated that the cognitive deficits of SAMP8 mice were improved by acupuncture treatment. Neuronal loss was found in hippocampal regions CA1 (−24%), CA3 (−18%) and DG (−28%) of Pc compared with Rc. The neuron number in hippocampal CA3 and DG of the Pa group was significantly increased by therapeutic acupuncture compared with the Pc group. Conclusions Acupuncture improved the cognitive impairment of middle-aged SAMP8 mice which could be attributed to the reduced neuron loss in hippocampal regions CA3 and DG. These results suggest that reducing neuron loss in the hippocampus by acupuncture is a potential therapeutic approach for the treatment of Alzheimer's disease and cognitive impairment diseases.


2021 ◽  
Vol 15 (1) ◽  
pp. 49-56
Author(s):  
Ali Hosseini-Sharifabad ◽  
◽  
Mohammad Reza Mofid ◽  
Majid Moradmand ◽  
Mohammad Keimasi ◽  
...  

Background: Excitotoxicity is a common pathological process in neurodegenerative diseases associated with overactivity of N-methyl-D-aspartate (NMDA) and P/Q type voltage-gated calcium (Cav2.1) channels. Omega-lycotoxin-Gsp2671g is a therapeutic tool to modulate overactive Cav2.1 (P/Q type) channels. Omega-lycotoxin binds to Cav2.1 channels with high affinity and selectivity. This study aimed to investigate the effects of Omega-lycotoxin on the cognitive impairment induced by kainic acid in rats. Methods: The effect of pre-treatment and post-treatment trials of intra-hippocampal Cornu Ammonis-3 administration of omega-lycotoxin (0.5, 1 or 2µg) was studied on the cognitive impairment induced by kainic acid in rats. The rats’ learning and memory were assessed by the passive avoidance and a single-day testing version of the Morris water maze method. Results: Omega-lycotoxin caused a significant increase in the latency of the passive avoidance test and the duration of their presence in the target area of the Morris water maze test compared to the groups treated with kainic acid (P<0.0001). There were statistically significant differences for the effects of various doses of omega-lycotoxin. The post-treatment groups showed a greater improvement than those in the pretreatment groups. Conclusion: The findings demonstrated that a single dose of omega-lycotoxin can prevent or revert the memory impairment caused by kainic acid in rats.


Nutrients ◽  
2020 ◽  
Vol 12 (7) ◽  
pp. 2019
Author(s):  
You-Chang Oh ◽  
Yun Hee Jeong ◽  
Malk Eun Pak ◽  
Younghoon Go

Banhasasim-tang (BHS) is an herbal medicine that has been widely used in East Asia to treat various symptoms associated with upper abdomen swelling. BHS has not been studied previously for neuroinflammation or cognitive disorder. Here, we use a lipopolysaccharide (LPS) model to investigate the effects and mechanisms of BHS in neuroinflammation and cognitive impairment of mice. We used a mouse model of LPS-induced cognitive impairment and neuroinflammation and examined whether administration of BHS prevents these deficits via Morris water maze test, passive avoidance test, histopathological analysis, Western blotting, and real-time reverse transcription polymerase chain reaction (RT-qPCR). We found via behavioral tests that BHS treatment effectively prevented LPS-induced memory loss and neuronal damage in mice. Histopathological analysis of mouse brains revealed that BHS inhibited LPS-induced expression of microglial and astrocyte activation markers. Furthermore, BHS inhibits the production of markers related to neurodegeneration, amyloidogenesis, and inflammation, and mRNA expression of inflammatory mediators in mouse brain tissue. Additionally, BHS pretreatment effectively inhibited generation of inflammatory factors and pathways in BV2 microglial cells stimulated by LPS. These observations indicate that BHS is effective in preventing cognitive impairment caused by neuroinflammation and has strong potential as a candidate treatment for neuronal inflammatory diseases.


2020 ◽  
Vol 17 (3) ◽  
pp. 249-258 ◽  
Author(s):  
Pavan Thapak ◽  
Mahendra Bishnoi ◽  
Shyam S. Sharma

Background: Diabetes is a chronic metabolic disorder affecting the central nervous system. A growing body of evidence has depicted that high glucose level leads to the activation of the transient receptor potential melastatin 2 (TRPM2) channels. However, there are no studies targeting TRPM2 channels in diabetes-induced cognitive decline using a pharmacological approach. Objective: The present study intended to investigate the effects of 2-aminoethoxydiphenyl borate (2-APB), a TRPM2 inhibitor, in diabetes-induced cognitive impairment. Methods: Streptozotocin (STZ, 50 mg/kg, i.p.) was used to induce diabetes in rats. Animals were randomly divided into the treatment group, model group and age-matched control and pre se group. 2-APB treatment was given for three weeks to the animals. After 10 days of behavioural treatment, parameters were performed. Animals were sacrificed at 10th week of diabetic induction and the hippocampus and cortex were isolated. After that, protein and mRNA expression study was performed in the hippocampus. Acetylcholinesterase (AchE) activity was done in the cortex. Results: : Our study showed the 10th week diabetic animals developed cognitive impairment, which was evident from the behavioural parameters. Diabetic animals depicted an increase in the TRPM2 mRNA and protein expression in the hippocampus as well as increased AchE activity in the cortex. However, memory associated proteins were down-regulated, namely Ca2+/calmodulin-dependent protein kinase II (CaMKII-Thr286), glycogen synthase kinase 3 beta (GSK-3β-Ser9), cAMP response element-binding protein (CREB-Ser133), and postsynaptic density protein 95 (PSD-95). Gene expression of parvalbumin, calsequestrin and brain-derived neurotrophic factor (BDNF) were down-regulated while mRNA level of calcineurin A/ protein phosphatase 3 catalytic subunit alpha (PPP3CA) was upregulated in the hippocampus of diabetic animals. A three-week treatment with 2-APB significantly ameliorated the alteration in behavioural cognitive parameters in diabetic rats. Moreover, 2-APB also down-regulated the expression of TRPM2 mRNA and protein in the hippocampus as well as AchE activity in the cortex of diabetic animals as compared to diabetic animals. Moreover, the 2-APB treatment also upregulated the CaMKII (Thr-286), GSK-3β (Ser9), CREB (Ser133), and PSD-95 expression and mRNA levels of parvalbumin, calsequestrin, and BDNF while mRNA level of calcineurin A was down-regulated in the hippocampus of diabetic animals. Conclusion: : This study confirms the ameliorative effect of TRPM2 channel inhibitor in the diabetes- induced cognitive deficits. Inhibition of TRPM2 channels reduced the calcium associated downstream signaling and showed a neuroprotective effect of TRPM2 channels in diabetesinduced cognitive impairment.


2020 ◽  
Vol 16 ◽  
Author(s):  
Dang Kim Thu ◽  
Dao Thi Vui ◽  
Nguyen Thi Ngoc Huyen ◽  
Nguyen Thi Thanh Binh ◽  
Nguyen Thi Huyen ◽  
...  

Background: Huperzia phlegmaria has been used for the treatment of neurological disorder. Alkaloids are main bioactive compounds found in Huperzia phlegmaria. We aimed to investigate the acetylcholinesterase (AChE) inhibitory activity in vitro of Huperzia phlegmaria alkaloid extract (HpAE) and protective effects on mice which were induced cognitive deficits by scopolamine. Methods: AChE inhibitory activity and kinetic inhibition mechanism was investigated by Ellman's assay. Mice were administrated orally HpAE (30 mg/kg and 60 mg/kg) for fourteen days, and injected scopolamine at a dose of 1 mg/kg intraperitoneally for four days to induce cognitive impairment. The Y-maze and the Morris water maze were used for evaluating the memory behaviors. Acetylcholine (ACh) levels and AChE activity were measured in brain tissue. Glutathione peroxidase (GPx), superoxide dismutase (SOD) activities, and malondialdehyde (MDA) groups were also evaluated in the mouse brain tissues. Results: Our data showed that HpAE had the strong AChE inhibitory activity with an IC50 value of 5.12 ± 0.48 μg/mL in a concentration-dependent manner. Kinetic inhibition analysis demonstrated that HpPAE inhibited AChE followed the mixed inhibition type with Ki (representing the affinity of the enzyme and inhibitor) was 4.37 ± 0.35 µg/mL. Scopolamine induced the cognitive impairment in Morris Water Maze and Y-maze test along with reduced brain levels of ACh and antioxidant enzyme and increased AChE activity in mouse brain tissues. Treatment with HpAE at both dose (30 mg/kg and 60 mg/kg) decreased the SCP-induced cognitive impairment in both behavioral tests along with decreased acetylcholinesterase activity and MDA level, and increased ACh level and antioxidant enzyme in mouse brain tissues. Conclusion: Our results suggested that the HpAE at both dose (30 mg/kg and 60 mg/kg) may be used for prevent and treatment of Alzheimer’s disease.


2021 ◽  
pp. 174749302098455
Author(s):  
Nick A Weaver ◽  
Angelina K Kancheva ◽  
Jae-Sung Lim ◽  
J Matthijs Biesbroek ◽  
Irene MC Huenges Wajer ◽  
...  

Background Post-stroke cognitive impairment can occur after damage to various brain regions, and cognitive deficits depend on infarct location. The Mini-Mental State Examination (MMSE) is still widely used to assess post-stroke cognition, but it has been criticized for capturing only certain cognitive deficits. Along these lines, it might be hypothesized that cognitive deficits as measured with the MMSE primarily involve certain infarct locations. Aims This comprehensive lesion-symptom mapping study aimed to determine which acute infarct locations are associated with post-stroke cognitive impairment on the MMSE. Methods We examined associations between impairment on the MMSE (<5th percentile; normative data) and infarct location in 1198 patients (age 67 ± 12 years, 43% female) with acute ischemic stroke using voxel-based lesion-symptom mapping. As a frame of reference, infarct patterns associated with impairments in individual cognitive domains were determined, based on a more detailed neuropsychological assessment. Results Impairment on the MMSE was present in 420 patients (35%). Large voxel clusters in the left middle cerebral artery territory and thalamus were significantly (p < 0.01) associated with cognitive impairment on the MMSE, with highest odds ratios (>15) in the thalamus and superior temporal gyrus. In comparison, domain-specific impairments were related to various infarct patterns across both hemispheres including the left medial temporal lobe (verbal memory) and right parietal lobe (visuospatial functioning). Conclusions Our findings indicate that post-stroke cognitive impairment on the MMSE primarily relates to infarct locations in the left middle cerebral artery territory. The MMSE is apparently less sensitive to cognitive deficits that specifically relate to other locations.


2021 ◽  
Vol 22 (9) ◽  
pp. 4617
Author(s):  
Styliana Kyriakoudi ◽  
Anthi Drousiotou ◽  
Petros P. Petrou

Mitochondria are dynamic organelles, the morphology of which is tightly linked to their functions. The interplay between the coordinated events of fusion and fission that are collectively described as mitochondrial dynamics regulates mitochondrial morphology and adjusts mitochondrial function. Over the last few years, accruing evidence established a connection between dysregulated mitochondrial dynamics and disease development and progression. Defects in key components of the machinery mediating mitochondrial fusion and fission have been linked to a wide range of pathological conditions, such as insulin resistance and obesity, neurodegenerative diseases and cancer. Here, we provide an update on the molecular mechanisms promoting mitochondrial fusion and fission in mammals and discuss the emerging association of disturbed mitochondrial dynamics with human disease.


Sign in / Sign up

Export Citation Format

Share Document