scholarly journals Hydroxynonenal causes Langerhans cell degeneration in the pancreas of Japanese macaque monkeys

PLoS ONE ◽  
2021 ◽  
Vol 16 (11) ◽  
pp. e0245702
Author(s):  
Piyakarn Boontem ◽  
Tetsumori Yamashima

Background For their functions of insulin biosynthesis and glucose- and fatty acid- mediated insulin secretion, Langerhans β-cells require an intracellular milieu rich in oxygen. This requirement makes β-cells, with their constitutively low antioxidative defense, susceptible to the oxidative stress. Although much progress has been made in identifying its molecular basis in experimental systems, whether the oxidative stress due to excessive fatty acids plays a crucial role in the Langerhans cell degeneration in primates is still debated. Methods Focusing on Hsp70.1, which has dual functions as molecular chaperone and lysosomal stabilizer, the mechanism of lipotoxicity to Langerhans cells was studied using macaque monkeys after the consecutive injections of the lipid peroxidation product ‘hydroxynonenal’. Based on the ‘calpain-cathepsin hypothesis’ formulated in 1998, calpain activation, Hsp70.1 cleavage, and lysosomal integrity were studied by immunofluorescence histochemistry, electron microscopy, and Western blotting. Results Light microscopy showed more abundant vacuole formation in the hydroxynonenal-treated islet cells than the control cells. Electron microscopy showed that vacuolar changes, which were identified as enlarged rough ER, occurred mainly in β-cells followed by δ-cells. Intriguingly, both cell types showed a marked decrease in insulin and somatostatin granules. Furthermore, they exhibited marked increases in peroxisomes, autophagosomes/autolysosomes, lysosomal and peroxisomal membrane rupture/permeabilization, and mitochondrial degeneration. Disrupted peroxisomes were often localized in the close vicinity of degenerating mitochondria or autolysosomes. Immunofluorescence histochemical analysis showed an increased co-localization of activated μ-calpain and Hsp70.1 with the extralysosomal release of cathepsin B. Western blotting showed increases in μ-calpain activation, Hsp70.1 cleavage, and expression of the hydroxynonenal receptor GPR109A. Conclusions Taken together, these data implicate hydroxynonenal in both oxidation of Hsp70.1 and activation of μ-calpain. The calpain-mediated cleavage of the carbonylated Hsp70.1, may cause lysosomal membrane rupture/permeabilization. The low defense of primate Langerhans cells against hydroxynonenal and peroxisomally-generated hydrogen peroxide, was presumably overwhelmed to facilitate cell degeneration.

2021 ◽  
Author(s):  
Tetsumori Yamashima ◽  
Piyakarn Boontem

Background For their functions of insulin biosynthesis and glucose- and fatty acid- induced insulin secretion, the Langerhans β-cells require an intracellular milieu rich in oxygen. This requirement makes β-cells, with their constitutively low antioxidative defense, susceptible to the oxidative stress. Although much progress has been made in identifying its molecular basis in the experimental systems, whether the oxidative stress due to excessive fatty acids plays a crucial role in the Langerhans degeneration in primates is still debated. Methods Focusing on Hsp70.1, which has dual functions as a molecular chaperone and lysosomal stabilizer, the mechanism of lipotoxicity to the Langerhans islet cells was studied using Japanese macaque monkeys (Macaca fuscata) after the consecutive injections of the lipid peroxidation product hydroxynonenal. Based on the ‘calpain-cathepsin hypothesis’ of ischemic neuronal death formulated in 1998, calpain activation, Hsp70.1 cleavage, and lysosomal integrity were studied by immunofluorescence histochemistry, electron microscopy and Western blotting.  Results Light microscopy showed higher vacuole formation in the treated islet cells than in the control cells. Electron microscopy showed that vacuolar changes that were identified as enlarged rough endoplasmic reticula occurred mainly in β-cells followed by δ-cells. Intriguingly, both cell types showed a marked decrease in insulin and somatostatin granules. Furthermore, they exhibited marked increases in peroxisomes, autophagosomes/autolysosomes, lysosomal and peroxisomal membrane rupture/permeabilization, and mitochondrial degeneration. Disrupted peroxisomes were often localized in the close vicinity of degenerating mitochondria or autolysosomes. Immunofluorescence histochemical analysis showed an increased colocalization of activated µ-calpain and Hsp70.1 with the extralysosomal release of cathepsin B. Western blotting showed increases in µ-calpain activation, Hsp70.1 cleavage, and hydroxynonenal receptor GPR109A expression.  Conclusions Taken together, these data implicate hydroxynonenal in both the carbonylation of Hsp70.1 and the activation of µ-calpain. The calpain-mediated cleavage of the carbonyl group on Hsp70.1 after the hydroxynonenal-mediated carbonylation of Hsp70.1, may cause lysosomal membrane rupture/permeabilization. The low defense of primate Langerhans cells against exogenous hydroxynonenal and peroxisomally-generated hydrogen peroxide, was presumably overwhelmed to facilitate cell degeneration.


2021 ◽  
Vol 22 (3) ◽  
pp. 1059
Author(s):  
Bodo C. Melnik

Epidemiological studies associate milk consumption with an increased risk of Parkinson’s disease (PD) and type 2 diabetes mellitus (T2D). PD is an α-synucleinopathy associated with mitochondrial dysfunction, oxidative stress, deficient lysosomal clearance of α-synuclein (α-syn) and aggregation of misfolded α-syn. In T2D, α-syn promotes co-aggregation with islet amyloid polypeptide in pancreatic β-cells. Prion-like vagal nerve-mediated propagation of exosomal α-syn from the gut to the brain and pancreatic islets apparently link both pathologies. Exosomes are critical transmitters of α-syn from cell to cell especially under conditions of compromised autophagy. This review provides translational evidence that milk exosomes (MEX) disturb α-syn homeostasis. MEX are taken up by intestinal epithelial cells and accumulate in the brain after oral administration to mice. The potential uptake of MEX miRNA-148a and miRNA-21 by enteroendocrine cells in the gut, dopaminergic neurons in substantia nigra and pancreatic β-cells may enhance miRNA-148a/DNMT1-dependent overexpression of α-syn and impair miRNA-148a/PPARGC1A- and miRNA-21/LAMP2A-dependent autophagy driving both diseases. MiRNA-148a- and galactose-induced mitochondrial oxidative stress activate c-Abl-mediated aggregation of α-syn which is exported by exosome release. Via the vagal nerve and/or systemic exosomes, toxic α-syn may spread to dopaminergic neurons and pancreatic β-cells linking the pathogenesis of PD and T2D.


Life ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 579
Author(s):  
Fei Yang ◽  
Lingli Yang ◽  
Lanting Teng ◽  
Huimin Zhang ◽  
Ichiro Katayama

The role of Langerhans cells (LCs) in vitiligo pathogenesis remains unclear, with published studies reporting contradictory results regarding the quantity of LCs and no data on the features of LCs in vitiligo. Here, we aimed to analyze the presence, density, and morphological features of LCs in the epidermis of patients with vitiligo. Skin biopsies were stained for LCs using anti-CD1a/anti-langerin antibodies and analyzed by immunocytochemistry with light and electron microscopy. Compared with healthy controls, we detected significantly increased numbers of epidermal LCs in lesional skin from vitiligo in the progressive state. These LCs exhibited striking morphological alterations, including an elevated number of dendrites, with increased length and more branches than dendrites from controls. Ultrastructure examination via immuno-electron microscopy revealed markedly reduced Birbeck granules (BGs) and shorter BG rods in LCs from progressive vitiligo, with higher expression of langerin. Additionally, expression of S100B, the activity biomarker of vitiligo, was increased in these LCs. This work provides new insight on the cellular composition of LCs in vitiliginous skin, revealing altered morphology and increased LC numbers, with elevated S100B expression. Our data suggest LCs might play a critical role in vitiligo pathogenesis and thus may represent a novel therapeutic target for this disease.


Foods ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1203
Author(s):  
Huan Zhang ◽  
Jianhang Xu ◽  
Qian Chen ◽  
Hui Wang ◽  
Baohua Kong

As functional starter cultures and potential probiotics, the ability of lactic acid bacteria to resist oxidative stress is essential to maintain viability and functional properties. This study investigates the effects of H2O2 at different concentrations (0, 1, 2, and 3 mM) on the physiological, morphological, and antioxidant properties of Pediococcus pentosaceus R1 and Lactobacillus fermentum R6 isolated from Harbin dry sausages. The increase in H2O2 concentration induced a significant increase in reactive oxygen species and a decrease in intracellular ATP levels (p < 0.05). Based on scanning electron microscopy, transmission electron microscopy, and electric conductivity analysis, H2O2 stress caused cell deformation, the destruction of cell membrane integrity, partial loss of the cytoplasm, and an increase in the cell conductivity of both strains. H2O2 stress with 1 mM or 2 mM concentrations could effectively improve the scavenging rates of free radicals, the activities of superoxide dismutase and glutathione peroxide, and the total antioxidant capacity of both strains (p < 0.05). In conclusion, an appropriate oxidative stress contributed to the activation of the antioxidant defense system of both strains, conferred strains a better effect in inhibiting the oxidation of fermented foods, and improved the health of the host.


2021 ◽  
Vol 28 (1) ◽  
Author(s):  
Junqiang Yan ◽  
Hongxia Ma ◽  
Xiaoyi Lai ◽  
Jiannan Wu ◽  
Anran Liu ◽  
...  

Abstract Background Parkinson’s disease (PD) is the second most common neurodegenerative disease after Alzheimer's disease. The oxidative stress is an important component of the pathogenesis of PD. Artemisinin (ART) has antioxidant and neuroprotective effects. The purpose of this study is to explore the neuroprotective effect of ART on 1-methyl-4-phenyliodine iodide (MPP +)-treated SH-SY5Y cells and underlying mechanism. Methods We used MPP+-treated SH-SY5Y cells to study the neuroprotective effect of ART. Cell viability was measured by MTT assay after incubating the cells with MPP+ and/or ART for 24 h. DCFH-DA was used to detect the level of intracellular reactive oxygen species (ROS), and WST-8 was used to detect the level of superoxide dismutase (SOD). The level of intracellular reduced glutathione (GSH) was detected with 5,5΄-dithiobis-(2-nitrobenzoic acid), and the level of malondialdehyde (MDA) was assessed based on the reaction of MDA and thiobarbituric acid. A mitochondrial membrane potential detection kit (JC-1) was used to detect changes in the mitochondrial membrane potential (MMP), and an Annexin V-FITC cell apoptosis kit was used to detect cell apoptosis. The expression levels of caspase-3, cleaved caspase-3 and the autophagy-related proteins LC3, beclin-1, and p62 were detected by Western blotting. In addition, to verify the change in autophagy, we used immunofluorescence to detect the expression of LC3 and p62. Results No significant cytotoxicity was observed at ART concentrations up to 40 μM. ART could significantly increase the viability of SH-SY5Y cells treated with MPP+ and reduce oxidative stress damage and apoptosis. In addition, the Western blotting and immunofluorescence results showed that MPP+ treatment could increase the protein expression of beclin1 and LC3II/LC3I and decrease the protein expression of p62, indicating that MPP+ treatment could induce autophagy. Simultaneous treatment with ART and MPP+ could decrease the protein expression of beclin1 and LC3II/LC3I and increase the protein expression of p62, indicating that ART could decrease the level of autophagy induced by MPP+. Conclusion Our results indicate that ART has a protective effect on MPP+-treated SH-SY5Y cells by the antioxidant, antiapoptotic activities and inhibition of autophagy. Our findings may provide new hope for the prevention and treatment of PD.


Pathogens ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 194
Author(s):  
Annabel Guttentag ◽  
Krishothman Krishnakumar ◽  
Nural Cokcetin ◽  
Steven Hainsworth ◽  
Elizabeth Harry ◽  
...  

Superficial dermatophyte infections, commonly known as tineas, are the most prevalent fungal ailment and are increasing in incidence, leading to an interest in alternative treatments. Many floral honeys possess antimicrobial activity due to high sugar, low pH, and the production of hydrogen peroxide (H2O2) from the activity of the bee-derived enzyme glucose oxidase. Australian jarrah (Eucalyptus marginata) honey produces particularly high levels of H2O2 and has been found to be potently antifungal. This study characterized the activity of jarrah honey on fungal dermatophyte species. Jarrah honey inhibited dermatophytes with minimum inhibitory concentrations (MICs) of 1.5–3.5% (w/v), which increased to ≥25% (w/v) when catalase was added. Microscopic analysis found jarrah honey inhibited the germination of Trichophyton rubrum conidia and scanning electron microscopy of mature T. rubrum hyphae after honey treatment revealed bulging and collapsed regions. When treated hyphae were stained using REDOX fluorophores these did not detect any internal oxidative stress, suggesting jarrah honey acts largely on the hyphal surface. Although H2O2 appears critical for the antifungal activity of jarrah honey and its action on fungal cells, these effects persisted when H2O2 was eliminated and could not be replicated using synthetic honey spiked with H2O2, indicating jarrah honey contains agents that augment antifungal activity.


2020 ◽  
pp. 194589242098241
Author(s):  
Hai Lin ◽  
Guangyi Ba ◽  
Ru Tang ◽  
Mingxian Li ◽  
Zhipeng Li ◽  
...  

Background Oxidative stress plays crucial roles in the pathogenesis of chronic rhinosinusitis with nasal polyps (CRSwNP). Thioredoxin-interacting protein (TXNIP) is essential in the process of triggering oxidative stress. However, its role and mechanism in CRSwNP remain unclear. The present study sought to explore the role and mechanism of TXNIP in the pathogenesis of CRSwNP. Methods Western blotting, real-time PCR and immunohistochemistry (IHC) were employed to assess TXNIP, thioredoxin (TRX) expression in nasal tissue samples from patients with CRSwNP and control subjects. MDA level and SOD activity in nasal tissue homogenates were measured using MDA and SOD Assay Kit. To evaluate the role and mechanism of TXNIP in CRSwNP, human nasal epithelial cells (HNECs) were cultured and stimulated using TXNIP siRNA, with or without N-acetylcysteine (NAC, an ROS scavenger). Western blotting, real-time PCR, ROS detecting dye DCFH-DA, MDA and SOD Assay Kit were performed to assess the effects and mechanisms of stimulators on the cells. Results We found significantly increased levels of TXNIP and decreased levels of TRX protein, mRNA, positive cells, increased MDA level and decreased SOD activity in CRSwNP patients compared with control subjects. In vitro study, significantly altered levels of TXNIP, TRX, MDA, SOD and ROS in HNECs were found following treatment of TXNIP siRNA with or without NAC on HNECs. Conclusion TXNIP expression was increased and TRX expression was decreased in CRSwNP at both protein and mRNA levels. MDA levels were increased and SOD activities were decreased in CRSwNP. TXNIP may have negative association with TRX, and then decrease SOD activities and increase MDA levels, resulting in the upregulation of ROS and oxidative stress in HNECs, which may play a pivotal role in the pathogenesis of CRSwNP. Future studies are expected to further explore the role and mechanism of TXNIP in CRSwNP.


Sign in / Sign up

Export Citation Format

Share Document