scholarly journals Optimization of 1D/3D Electro-Thermal Model for Liquid-Cooled Lithium-Ion Capacitor Module in High Power Applications

Electricity ◽  
2021 ◽  
Vol 2 (4) ◽  
pp. 503-523
Author(s):  
Danial Karimi ◽  
Hamidreza Behi ◽  
Mohsen Akbarzadeh ◽  
Sahar Khaleghi ◽  
Joeri Van Mierlo ◽  
...  

Lithium-ion capacitor technology (LiC) is well known for its higher power density compared to electric double-layer capacitors (EDLCs) and higher energy density compared to lithium-ion batteries (LiBs). However, the LiC technology is affected by a high heat generation problem in high-power applications when it is continuously being charged/discharged with high current rates. Such a problem is associated with safety and reliability issues that affect the lifetime of the cell. Therefore, for high-power applications, a robust thermal management system (TMS) is essential to control the temperature evolution of LiCs to ensure safe operation. In this regard, developing accurate electrical and thermal models is vital to design a proper TMS. This work presents a detailed 1D/3D electro-thermal model at module level employing MATLAB/SIMULINK® coupled to the COMSOL Multiphysics® software package. The effect of the inlet coolant flow rate, inlet coolant temperature, inlet and outlet positions, and the number of arcs are examined under the cycling profile of a continuous 150 A current rate without a rest period for 1400 s. The results prove that the optimal scenario for the LCTMS would be the inlet coolant flow rate of 500 mL/min, the inlet temperature of 30 °C, three inlets, three outlets, and three arcs in the coolant path. This scenario decreases the module’s maximum temperature (Tmax) and temperature difference by 11.5% and 79.1%, respectively. Moreover, the electro-thermal model shows ±5% and ±4% errors for the electrical and thermal models, respectively.

Energies ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 4187
Author(s):  
Jiabin Duan ◽  
Jiapei Zhao ◽  
Xinke Li ◽  
Satyam Panchal ◽  
Jinliang Yuan ◽  
...  

To ensure optimum working conditions for lithium-ion batteries, a numerical study is carried out for three-dimensional temperature distribution of a battery liquid cooling system in this work. The effect of channel size and inlet boundary conditions are evaluated on the temperature field of the battery modules. Based on the thermal behavior of discharging battery obtained experimental measurements, two temperature control strategies are proposed and studied. The results show that the channel width of the cooling plates has a great influence on the maximum temperature in the battery module. It is also revealed that increasing inlet water flow rate can significantly improve the heat transfer capacity of the battery thermal management system, while the relationship between them is not proportional. Lowering the inlet temperature can reduce the maximum temperature predicted in the battery module significantly. However, this will also lead to additional energy consumed by the cooling system. It is also found that the Scheme 5 among various temperature control strategies can ensure the battery pack working in the best temperature range in different depths of discharge. Compared with the traditional one with a given flow rate, the parasitic energy consumption in Scheme 5 can be reduced by around 80%.


2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Chen Li ◽  
Xiong Zhang ◽  
Kai Wang ◽  
Xianzhong Sun ◽  
Yanan Xu ◽  
...  

AbstractLithium-ion capacitors are envisaged as promising energy-storage devices to simultaneously achieve a large energy density and high-power output at quick charge and discharge rates. However, the mismatched kinetics between capacitive cathodes and faradaic anodes still hinder their practical application for high-power purposes. To tackle this problem, the electron and ion transport of both electrodes should be substantially improved by targeted structural design and controllable chemical doping. Herein, nitrogen-enriched graphene frameworks are prepared via a large-scale and ultrafast magnesiothermic combustion synthesis using CO2 and melamine as precursors, which exhibit a crosslinked porous structure, abundant functional groups and high electrical conductivity (10524 S m−1). The material essentially delivers upgraded kinetics due to enhanced ion diffusion and electron transport. Excellent capacities of 1361 mA h g−1 and 827 mA h g−1 can be achieved at current densities of 0.1 A g−1 and 3 A g−1, respectively, demonstrating its outstanding lithium storage performance at both low and high rates. Moreover, the lithium-ion capacitor based on these nitrogen-enriched graphene frameworks displays a high energy density of 151 Wh kg−1, and still retains 86 Wh kg−1 even at an ultrahigh power output of 49 kW kg−1. This study reveals an effective pathway to achieve synergistic kinetics in carbon electrode materials for achieving high-power lithium-ion capacitors.


Materials ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3586
Author(s):  
Qi An ◽  
Xingru Zhao ◽  
Shuangfu Suo ◽  
Yuzhu Bai

Lithium-ion capacitors (LICs) have been widely explored for energy storage. Nevertheless, achieving good energy density, satisfactory power density, and stable cycle life is still challenging. For this study, we fabricated a novel LIC with a NiO-rGO composite as a negative material and commercial activated carbon (AC) as a positive material for energy storage. The NiO-rGO//AC system utilizes NiO nanoparticles uniformly distributed in rGO to achieve a high specific capacity (with a current density of 0.5 A g−1 and a charge capacity of 945.8 mA h g−1) and uses AC to provide a large specific surface area and adjustable pore structure, thereby achieving excellent electrochemical performance. In detail, the NiO-rGO//AC system (with a mass ratio of 1:3) can achieve a high energy density (98.15 W h kg−1), a high power density (10.94 kW kg−1), and a long cycle life (with 72.1% capacity retention after 10,000 cycles). This study outlines a new option for the manufacture of LIC devices that feature both high energy and high power densities.


Author(s):  
Zhigang Li ◽  
Jun Li ◽  
Liming Song ◽  
Qing Gao ◽  
Xin Yan ◽  
...  

The modern gas turbine is widely applied in the aviation propulsion and power generation. The rim seal is usually designed at the periphery of the wheel-space and prevented the hot gas ingestion in modern gas turbines. The high sealing effectiveness of rim seal can improve the aerodynamic performance of gas turbines and avoid of the disc overheating. Effect of outer fin axial gap of radial rim seal on the sealing effectiveness and fluid dynamics was numerically investigated in this work. The sealing effectiveness and fluid dynamics of radial rim seal with three different outer fin axial gaps was conducted at different coolant flow rates using three-dimensional Reynolds-Averaged Navier-Stokes (RANS) and SST turbulent model solutions. The accuracy of the presented numerical approach for the prediction of the sealing performance of the turbine rim seal was demonstrated. The obtained results show that the sealing effectiveness of radial rim seal increases with increase of coolant flow rate at the fixed axial outer fin gap. The sealing effectiveness increases with decrease of the axial outer fin gap at the fixed coolant flow rate. Furthermore, at the fixed coolant flow rate, the hot gas ingestion increases with the increase of the axial outer fin gap. This flow behavior intensifies the interaction between the hot gas and coolant flow at the clearance of radial rim seal. The preswirl coefficient in the wheel-space cavity is also illustrated to analyze the flow dynamics of radial rim seal at different axial outer fin gaps.


2015 ◽  
Vol 1095 ◽  
pp. 846-850
Author(s):  
Min Wang ◽  
Ke Ping Zhang ◽  
Feng Wei Zhang

In order to study the law between the internal coolant flow rate and the temperature of milling roller, the temperature field of water-cooled roller was simulated with Fluent software. The results showed that with the increase of the coolant flow rate, the temperature on roller surface decreased, but after the flow rate of coolant increased to 3.5 kg/s, the temperature of roller maintained invariant almost, so 3.5 kg/s was the best flow rate.


Author(s):  
K. Asgar Ali ◽  
Quamber H. Nagpurwala ◽  
Abdul Nassar ◽  
S. V. Ramanamurthy

This paper deals with the numerical investigations on a low pressure axial turbine stage to assess the effect of variation in rotor tip clearance and tip coolant ejection rate on the end wall losses. The rotor, along with the NGV, was modeled to represent the entire turbine stage. The CFX TASCflow software was used to perform steady state analysis for different rotor tip clearances and different tip coolant ejection rates. The locations of the cooling slots were identified on the blade tip and the coolant ejection rate was specified at these areas. The simulations were carried out with tip clearances of 0%, 1% and 2% of blade height and ejection flow rates of 0.5%, 0.75% and 1% of main turbine flow rate. It is shown that the size and strength of the leakage vortex is directly related to the tip clearance. The reduction in efficiency is not in linearity with the tip clearance owing to the effect of boundary layer growth on the end walls. Introduction of the tip coolant flow shows increased total–total efficiency compared to that of the uncooled tip. This is attributed to a reduction in the strength of the leakage vortex due to reduced cross-flow over the tip clearance from pressure surface to suction surface. At a coolant flow rate of 0.75% of the main flow rate, there is significant increase in efficiency of about 0.5%. Optimum tip clearance and coolant flow rate are obtained based on the results of the present analysis.


2021 ◽  
Author(s):  
Mahmood Alqefl ◽  
Kedar Nawathe ◽  
Pingting Chen ◽  
Rui Zhu ◽  
Yong Kim ◽  
...  

2021 ◽  
Author(s):  
Matt Harrison ◽  
Joshua Gess

Abstract Using Particle Image Velocimetry (PIV), the amount of fluid required to sustain nucleate boiling was quantified to a microstructured copper circular disk. Having prepared the disk with preferential nucleation sites, an analytical model of the net coolant flow rate requirements to a single site has been produced and validated against experimental data. The model assumes that there are three primary phenomena contributing to the coolant flow rate requirements at the boiling surface; radial growth of vapor throughout incipience to departure, bubble rise, and natural convection around the periphery. The total mass flowrate is the sum of these contributing portions. The model accurately predicts the quenching fluid flow rate at low and high heat fluxes with 4% and 30% error of the measured value respectively. For the microstructured surface examined in this study, coolant flow rate requirements ranged from 0.1 to 0.16 kg/sec for a range of heat fluxes from 5.5 to 11.0 W/cm2. Under subcooled conditions, the coolant flow rate requirements plummeted to a nearly negligible value due to domination of transient conduction as the primary heat transfer mechanism at the liquid/vapor/surface interface. PIV and the validated analytical model could be used as a test standard where the amount of coolant the surface needs in relation to its heat transfer coefficient or thermal resistance is a benchmark for the efficacy of a standard surface or boiling enhancement coating/surface structure.


Sign in / Sign up

Export Citation Format

Share Document