scholarly journals Uncovering Novel Plasma Membrane Carboxylate Transporters in the Yeast Cyberlindnera jadinii

2022 ◽  
Vol 8 (1) ◽  
pp. 51
Author(s):  
Maria Sousa-Silva ◽  
Pedro Soares ◽  
João Alves ◽  
Daniel Vieira ◽  
Margarida Casal ◽  
...  

The yeast Cyberlindnera jadinii has great potential in the biotechnology industry due to its ability to produce a variety of compounds of interest, including carboxylic acids. In this work, we identified genes encoding carboxylate transporters from this yeast species. The functional characterization of sixteen plasma membrane carboxylate transporters belonging to the AceTr, SHS, TDT, MCT, SSS, and DASS families was performed by heterologous expression in Saccharomyces cerevisiae. The newly identified C. jadinii transporters present specificity for mono-, di-, and tricarboxylates. The transporters CjAto5, CjJen6, CjSlc5, and CjSlc13-1 display the broadest substrate specificity; CjAto2 accepts mono- and dicarboxylates; and CjAto1,3,4, CjJen1-5, CjSlc16, and CjSlc13-2 are specific for monocarboxylic acids. A detailed characterization of these transporters, including phylogenetic reconstruction, 3D structure prediction, and molecular docking analysis is presented here. The properties presented by these transporters make them interesting targets to be explored as organic acid exporters in microbial cell factories.

2006 ◽  
Vol 26 (1) ◽  
pp. 1-7 ◽  
Author(s):  
Si Sun ◽  
Jo Han Gan ◽  
Jennifer J. Paynter ◽  
Stephen J. Tucker

Our understanding of the mammalian inwardly rectifying family of K+ channels (Kir family) has recently been advanced by X-ray crystal structures of two homologous prokaryotic orthologs (KirBac1.1 and KirBac3.1). However, the functional properties of these KirBac channels are still poorly understood. To address this problem, we cloned and characterized genes encoding KirBac orthologs from a wide variety of different prokaryotes and a simple unicellular eukaryote. The functional properties of these KirBacs were then examined by growth complementation in a K+ uptake-deficient strain of Escherichia coli (TK2420). Whereas some KirBac genes exhibited robust growth complementation, others either did not complement or showed temperature-dependent complementation including KirBac1.1 and KirBac3.1. In some cases, KirBac expression was also toxic to the growth of E. coli. The KirBac family exhibited a range of sensitivity to the K+ channel blockers Ba2+ and Cs+ as well as differences in their ability to grow on very low-K+ media, thus demonstrating major differences in their permeation properties. These results reveal the existence of a functionally diverse superfamily of microbial KirBac genes and present an excellent resource for the structural and functional analysis of this class of K+ channels. Furthermore, the complementation assay used in this study provides a simple and robust method for the functional characterization of a range of prokaryotic K+ channels that are difficult to study by traditional methods.


2012 ◽  
Vol 7 (12) ◽  
pp. 1648-1652 ◽  
Author(s):  
Mineo Shibasaka ◽  
Sizuka Sasano ◽  
Sigeko Utsugi ◽  
Maki Katsuhara

2010 ◽  
Vol 38 (7) ◽  
pp. 4813-4822 ◽  
Author(s):  
Xin Wang ◽  
Ru Yang ◽  
Baichen Wang ◽  
Guifeng Liu ◽  
Chuanping Yang ◽  
...  

2008 ◽  
Vol 190 (19) ◽  
pp. 6318-6329 ◽  
Author(s):  
Maria Billini ◽  
Kostas Stamatakis ◽  
Vicky Sophianopoulou

ABSTRACT Synechococcus elongatus strain PCC 7942 is an alkaliphilic cyanobacterium that tolerates a relatively high salt concentration as a freshwater microorganism. Its genome sequence revealed seven genes, nha1 to nha7 (syn_pcc79420811, syn_pcc79421264, syn_pcc7942359, syn_pcc79420546, syn_pcc79420307, syn_pcc79422394, and syn_pcc79422186), and the deduced amino acid sequences encoded by these genes are similar to those of Na+/H+ antiporters. The present work focused on molecular and functional characterization of these nha genes encoding Na+/H+ antiporters. Our results show that of the nha genes expressed in Escherichia coli, only nha3 complemented the deficient Na+/H+ antiporter activity of the Na+-sensitive TO114 recipient strain. Moreover, two of the cyanobacterial strains with separate disruptions in the nha genes (Δnha1, Δnha2, Δnha3, Δnha4, Δnha5, and Δnha7) had a phenotype different from that of the wild type. In particular, ΔnhA3 cells showed a high-salt- and alkaline-pH-sensitive phenotype, while Δnha2 cells showed low salt and alkaline pH sensitivity. Finally, the transcriptional profile of the nha1 to nha7 genes, monitored using the real-time PCR technique, revealed that the nha6 gene is upregulated and the nha1 gene is downregulated under certain environmental conditions.


2011 ◽  
Vol 62 (6) ◽  
pp. 2023-2038 ◽  
Author(s):  
E. Cordoba ◽  
H. Porta ◽  
A. Arroyo ◽  
C. San Roman ◽  
L. Medina ◽  
...  

Horticulturae ◽  
2021 ◽  
Vol 7 (11) ◽  
pp. 458
Author(s):  
Wanting Zhang ◽  
Jingxue Li ◽  
Junhui Dong ◽  
Yan Wang ◽  
Liang Xu ◽  
...  

Radish is a kind of moderately salt-sensitive vegetable. Salt stress seriously decreases the yield and quality of radish. The plasma membrane Na+/H+ antiporter protein Salt Overly Sensitive 1 (SOS1) plays a crucial role in protecting plant cells against salt stress, but the biological function of the RsSOS1 gene in radish remains to be elucidated. In this study, the RsSOS1 gene was isolated from radish genotype ‘NAU-TR17’, and contains an open reading frame of 3414 bp encoding 1137 amino acids. Phylogenetic analysis showed that RsSOS1 had a high homology with BnSOS1, and clustered together with Arabidopsis plasma membrane Na+/H+ antiporter (AtNHX7). The result of subcellular localization indicated that the RsSOS1 was localized in the plasma membrane. Furthermore, RsSOS1 was strongly induced in roots of radish under 150 mmol/L NaCl treatment, and its expression level in salt-tolerant genotypes was significantly higher than that in salt-sensitive ones. In addition, overexpression of RsSOS1 in Arabidopsis could significantly improve the salt tolerance of transgenic plants. Meanwhile, the transformation of RsSOS1△999 could rescue Na+ efflux function of AXT3 yeast. In summary, the plasma membrane Na+/H+ antiporter RsSOS1 plays a vital role in regulating salt-tolerance of radish by controlling Na+ homeostasis. These results provided useful information for further functional characterization of RsSOS1 and facilitate clarifying the molecular mechanism underlying salt stress response in radish.


2021 ◽  
Vol 114 ◽  
pp. 103838
Author(s):  
Yunpeng Cao ◽  
Tao Fang ◽  
Mingli Fan ◽  
Lei Wang ◽  
Caiyun Lv ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document