underwater manipulation
Recently Published Documents


TOTAL DOCUMENTS

45
(FIVE YEARS 11)

H-INDEX

9
(FIVE YEARS 3)

Sensors ◽  
2022 ◽  
Vol 22 (2) ◽  
pp. 648
Author(s):  
Angela Mazzeo ◽  
Jacopo Aguzzi ◽  
Marcello Calisti ◽  
Simonepietro Canese ◽  
Fabrizio Vecchi ◽  
...  

The collection of delicate deep-sea specimens of biological interest with remotely operated vehicle (ROV) industrial grippers and tools is a long and expensive procedure. Industrial grippers were originally designed for heavy manipulation tasks, while sampling specimens requires dexterity and precision. We describe the grippers and tools commonly used in underwater sampling for scientific purposes, systematically review the state of the art of research in underwater gripping technologies, and identify design trends. We discuss the possibility of executing typical manipulations of sampling procedures with commonly used grippers and research prototypes. Our results indicate that commonly used grippers ensure that the basic actions either of gripping or caging are possible, and their functionality is extended by holding proper tools. Moreover, the approach of the research status seems to have changed its focus in recent years: from the demonstration of the validity of a specific technology (actuation, transmission, sensing) for marine applications, to the solution of specific needs of underwater manipulation. Finally, we summarize the environmental and operational requirements that should be considered in the design of an underwater gripper.


2021 ◽  
Vol 8 ◽  
Author(s):  
Woen-Sug Choi ◽  
Derek R. Olson ◽  
Duane Davis ◽  
Mabel Zhang ◽  
Andy Racson ◽  
...  

One of the key distinguishing aspects of underwater manipulation tasks is the perception challenges of the ocean environment, including turbidity, backscatter, and lighting effects. Consequently, underwater perception often relies on sonar-based measurements to estimate the vehicle’s state and surroundings, either standalone or in concert with other sensing modalities, to support the perception necessary to plan and control manipulation tasks. Simulation of the multibeam echosounder, while not a substitute for in-water testing, is a critical capability for developing manipulation strategies in the complex and variable ocean environment. Although several approaches exist in the literature to simulate synthetic sonar images, the methods in the robotics community typically use image processing and video rendering software to comply with real-time execution requirements. In addition to a lack of physics-based interaction model between sound and the scene of interest, several basic properties are absent in these rendered sonar images–notably the coherent imaging system and coherent speckle that cause distortion of the object geometry in the sonar image. To address this deficiency, we present a physics-based multibeam echosounder simulation method to capture these fundamental aspects of sonar perception. A point-based scattering model is implemented to calculate the acoustic interaction between the target and the environment. This is a simplified representation of target scattering but can produce realistic coherent image speckle and the correct point spread function. The results demonstrate that this multibeam echosounder simulator generates qualitatively realistic images with high efficiency to provide the sonar image and the physical time series signal data. This synthetic sonar data is a key enabler for developing, testing, and evaluating autonomous underwater manipulation strategies that use sonar as a component of perception.


2021 ◽  
Vol 7 ◽  
Author(s):  
Zhong Shen ◽  
Yafei Zhao ◽  
Hua Zhong ◽  
Kailuan Tang ◽  
Yishan Chen ◽  
...  

Soft robots are ideal for underwater manipulation in sampling and other servicing applications. Their unique features of compliance, adaptability, and being naturally waterproof enable robotic designs to be compact and lightweight, while achieving uncompromized dexterity and flexibility. However, the inherent flexibility and high nonlinearity of soft materials also results in combined complex motions, which creates both soft actuator and sensor challenges for force output, modeling, and sensory feedback, especially under highly dynamic underwater environments. To tackle these limitations, a novel Soft Origami Optical-Sensing Actuator (SOSA) with actuation and sensing integration is proposed in this paper. Inspired by origami art, the proposed sensorized actuator enables a large force output, contraction/elongation/passive bending actuation by fluid, and hybrid motion sensing with optical waveguides. The SOSA design brings two major novelties over current designs. First, it involves a new actuation-sensing mode which enables a superior large payload output and a robust and accurate sensing performance by introducing the origami design, significantly facilitating the integration of sensing and actuating technology for wider applications. Secondly, it simplifies the fabrication process for harsh environment application by investigating the boundary features between optical waveguides and ambient water, meaning the external cladding layer of traditional sensors is unnecessary. With these merits, the proposed actuator could be applied to harsh environments for complex interaction/operation tasks. To showcase the performance of the proposed SOSA actuator, a hybrid underwater 3-DOFs manipulator has been developed. The entire workflow on concept design, fabrication, modeling, experimental validation, and application are presented in detail as reference for wider effective robot-environment applications.


2020 ◽  
Vol 11 (1) ◽  
pp. 194
Author(s):  
Kevin Huang ◽  
Divas Subedi ◽  
Rahul Mitra ◽  
Isabella Yung ◽  
Kirkland Boyd ◽  
...  

Teleoperated systems enable human control of robotic proxies and are particularly amenable to inaccessible environments unsuitable for autonomy. Examples include emergency response, underwater manipulation, and robot assisted minimally invasive surgery. However, teleoperation architectures have been predominantly employed in manipulation tasks, and are thus only useful when the robot is within reach of the task. This work introduces the idea of extending teleoperation to enable online human remote control of legged robots, or telelocomotion, to traverse challenging terrain. Traversing unpredictable terrain remains a challenge for autonomous legged locomotion, as demonstrated by robots commonly falling in high-profile robotics contests. Telelocomotion can reduce the risk of mission failure by leveraging the high-level understanding of human operators to command in real-time the gaits of legged robots. In this work, a haptic telelocomotion interface was developed. Two within-user studies validate the proof-of-concept interface: (i) The first compared basic interfaces with the haptic interface for control of a simulated hexapedal robot in various levels of traversal complexity; (ii) the second presents a physical implementation and investigated the efficacy of the proposed haptic virtual fixtures. Results are promising to the use of haptic feedback for telelocomotion for complex traversal tasks.


ACS Nano ◽  
2019 ◽  
Vol 13 (9) ◽  
pp. 10596-10602 ◽  
Author(s):  
Jianqiang Zhang ◽  
Peng Liu ◽  
Bo Yi ◽  
Zhaoyue Wang ◽  
Xin Huang ◽  
...  

Meccanica ◽  
2019 ◽  
Vol 54 (6) ◽  
pp. 901-916
Author(s):  
Jangho Bae ◽  
Sangrok Jin ◽  
Jongwon Kim ◽  
TaeWon Seo

2019 ◽  
Vol 16 (2) ◽  
pp. 172988141983896 ◽  
Author(s):  
Arturo Gomez Chavez ◽  
Christian A Mueller ◽  
Tobias Doernbach ◽  
Andreas Birk

Intervention missions, that is, underwater manipulation tasks, for example, in the context of oil-&-gas production, require a high amount of precise, robust navigation. In this article, we describe the use of an advanced vision system suited for deep-sea operations, which in combination with artificial markers on target structures like oil-&-gas production-Christmas-trees significantly boosts navigation performance. The system is validated in two intensive field tests running off the shore of Marseille, France. In the experiments, a commercial remotely operated vehicle equipped with the system and a mock-up structure with an oil-&-gas production panel is used to evaluate the navigation performance.


Sign in / Sign up

Export Citation Format

Share Document