scholarly journals Male Humpback Whale Chorusing in Hawai‘i and Its Relationship With Whale Abundance and Density

2021 ◽  
Vol 8 ◽  
Author(s):  
Anke Kügler ◽  
Marc O. Lammers ◽  
Eden J. Zang ◽  
Adam A. Pack

Passive acoustic monitoring (PAM) with autonomous bottom-moored recorders is widely used to study cetacean occurrence, distribution and behaviors, as it is less affected by factors that limit other observation methods (e.g., vessel, land and aerial-based surveys) such as inclement weather, sighting conditions, or remoteness of study sites. During the winter months in Hawai‘i, humpback whale male song chorusing becomes the predominant contributor to the local soundscape and previous studies showed a strong seasonal pattern, suggesting a correlation with relative whale abundance. However, the relationship between chorusing levels and abundance, including non-singing whales, is still poorly understood. To investigate how accurately acoustic monitoring of singing humpback whales tracks their abundance, and therefore is a viable tool for studying whale ecology and population trends, we collected long-term PAM data from three bottom-moored Ecological Acoustic Recorders off west Maui, Hawaii during the winter and spring months of 2016–2021. We calculated daily medians of root-mean-square sound pressure levels (RMS SPL) of the low frequency acoustic energy (0–1.5 kHz) as a measure of cumulative chorusing intensity. In addition, between December and April we conducted a total of 26 vessel-based line-transect surveys during the 2018/19 through 2020/21 seasons and weekly visual surveys (n = 74) from a land-based station between 2016 and 2020, in which the location of sighted whale pods was determined with a theodolite. Combining the visual and acoustic data, we found a strong positive second-order polynomial correlation between SPLs and abundance (land: 0.72 ≤ R2 ≤ 0.75, vessel: 0.81 ≤ R2 ≤ 0.85 for three different PAM locations; Generalized Linear Model: pland ≪ 0.001, pvessel ≪ 0.001) that was independent from recording location (pland = 0.23, pvessel = 0.9880). Our findings demonstrate that PAM is a relatively low-cost, robust complement and alternative for studying and monitoring humpback whales in their breeding grounds that is able to capture small-scale fluctuations during the season and can inform managers about population trends in a timely manner. It also has the potential to be adapted for use in other regions that have previously presented challenges due to their remoteness or other limitations for conducting traditional surveys.

2020 ◽  
Vol 43 ◽  
pp. 421-434
Author(s):  
A Kügler ◽  
MO Lammers ◽  
EJ Zang ◽  
MB Kaplan ◽  
TA Mooney

Approximately half of the North Pacific humpback whale Megaptera novaeangliae stock visits the shallow waters of the main Hawaiian Islands seasonally. Within this breeding area, mature males produce an elaborate acoustic display known as song, which becomes the dominant source of ambient underwater sound between December and April. Following reports of unusually low whale numbers that began in 2015/16, we examined song chorusing recorded through long-term passive acoustic monitoring at 6 sites off Maui as a proxy for relative whale abundance between 2014 and 2019. Daily root-mean-square sound pressure levels (RMS SPLs) were calculated to compare variations in low-frequency acoustic energy (0-1.5 kHz). After 2014/15, the overall RMS SPLs decreased between 5.6 and 9.7 dB re 1 µPa2 during the peak of whale season (February and March), reducing ambient acoustic energy from chorusing by over 50%. This change in song levels co-occurred with a broad-scale oceanic heat wave in the northeast Pacific termed the ‘Blob,’ a major El Niño event in the North Pacific, and a warming period in the Pacific Decadal Oscillation cycle. Although it remains unclear whether our observations reflect a decrease in population size, a change in migration patterns, a shift in distribution to other areas, a change in the behavior of males, or some combination of these, our results indicate that continued monitoring and further studies of humpback whales throughout the North Pacific are warranted to better understand the fluctuations occurring in this recently recovered population and other populations that continue to be endangered or threatened.


2013 ◽  
Vol 94 (6) ◽  
pp. 1117-1125 ◽  
Author(s):  
Anita Murray ◽  
Aaron N. Rice ◽  
Christopher W. Clark

Humpback whales (Megaptera novaeangliae) are known to utilize Massachusetts Bay as a feeding ground in the spring and summer, during the annual migration of the Gulf of Maine sub-population. However, there is a limited understanding of the pattern of humpback whale occurrence in this region outside of the feeding period. Passive acoustic monitoring of Massachusetts Bay over a two-year period, revealed an extended presence of acoustically active humpback whales throughout a majority of the study period (87%; 633 days of presence out of 725 days of acoustic monitoring). Humpback whale presence oscillated between lengthy periods of consistent presence (April to December) and relatively shorter periods of variable presence (December to March). Seasonal variation in presence was evident during three distinct phases: (1) maximum-presence from spring to early winter; (2) variable-presence in early winter and early spring; and (3) minimum-presence mid-winter. The variation in seasonal presence was concurrent with coarse migratory patterns of humpback whales, and yearly variations in presence presumably reflect a shift in the influx and efflux of whales between years. The extended presence of humpbacks in this area suggests that Massachusetts Bay is an important, year-round habitat for the Gulf of Maine sub-population, and may warrant revision of management and regulatory practices to reflect this presence.


2016 ◽  
Vol 12 (11) ◽  
pp. 20160381 ◽  
Author(s):  
T. Aran Mooney ◽  
Maxwell B. Kaplan ◽  
Marc O. Lammers

Acoustic signals are fundamental to animal communication, and cetaceans are often considered bioacoustic specialists. Nearly all studies of their acoustic communication focus on sound pressure measurements, overlooking the particle motion components of their communication signals. Here we characterized the levels of acoustic particle velocity (and pressure) of song produced by humpback whales. We demonstrate that whales generate acoustic fields that include significant particle velocity components that are detectable over relatively long distances sufficient to play a role in acoustic communication. We show that these signals attenuate predictably in a manner similar to pressure and that direct particle velocity measurements can provide bearings to singing whales. Whales could potentially use such information to determine the distance of signalling animals. Additionally, the vibratory nature of particle velocity may stimulate bone conduction, a hearing modality found in other low-frequency specialized mammals, offering a parsimonious mechanism of acoustic energy transduction into the massive ossicles of whale ears. With substantial concerns regarding the effects of increasing anthropogenic ocean noise and major uncertainties surrounding mysticete hearing, these results highlight both an unexplored pathway that may be available for whale acoustic communication and the need to better understand the biological role of acoustic particle motion.


2020 ◽  
pp. 153-160 ◽  
Author(s):  
Samantha Strindberg ◽  
Peter J. Ersts ◽  
Tim Collins ◽  
Guy-Philippe Sounguet ◽  
Howard C. Rosenbaum

There have been few recent estimates of abundance for humpback whales (Megaptera novaeangliae) in the eastern South Atlantic Ocean. The firstdistance sampling survey of the coastal waters of Gabon was conducted in 2002. The difficult logistics of covering a large survey region withlimited time, effort and refuelling opportunities required a line transect survey design that carefully balanced the theoretical demands of distancesampling with these constraints. Inshore/offshore zigzag transects were conducted to a distance of up to approximately 50 n.miles from the coastof Gabon corresponding to the 1,000m depth contour, from the border with Equatorial Guinea to a point south of Mayumba, near the Congo borderrepresenting 1,488 n.miles of survey effort. Seventy-nine different groups of humpback whales were observed throughout the survey area comprisinga northern (Equatorial Guinea to Cap Lopez) and southern (Cap Lopez to Gamba) survey stratum. Relatively large numbers of whales wereencountered throughout the southern stratum; encounter rates and densities were considerably lower in the northern stratum. The initial abundanceestimate from a distance sampling analysis suggests that more than 1,200 humpback whales were present in Gabon’s coastal waters during thesurvey period. This estimate does not account for either availability or perception bias. In addition, this instantaneous snapshot of the number ofwhales occupying Gabon’s coastal waters is likely to correspond to only a portion of the population that uses these waters over time. However, theabundance estimate derived from the aerial survey are consistent with those based on photographic and genetic capture-recapture techniques. Acontinuing research programme in this area will help refine estimates of humpback whale abundance and using genetic and photographic data alsoestablish the relationships between this and other populations. This is important given the potential overlap of humpback whales in large numbersthroughout this region and the current extent and continued expansion of hydrocarbon exploration and extraction activities throughout the Gulf ofGuinea.


2012 ◽  
Vol 44 (2) ◽  
pp. 75-93
Author(s):  
Peter Mortensen

This essay takes its cue from second-wave ecocriticism and from recent scholarly interest in the “appropriate technology” movement that evolved during the 1960s and 1970s in California and elsewhere. “Appropriate technology” (or AT) refers to a loosely-knit group of writers, engineers and designers active in the years around 1970, and more generally to the counterculture’s promotion, development and application of technologies that were small-scale, low-cost, user-friendly, human-empowering and environmentally sound. Focusing on two roughly contemporary but now largely forgotten American texts Sidney Goldfarb’s lyric poem “Solar-Heated-Rhombic-Dodecahedron” (1969) and Gurney Norman’s novel Divine Right’s Trip (1971)—I consider how “hip” literary writers contributed to eco-technological discourse and argue for the 1960s counterculture’s relevance to present-day ecological concerns. Goldfarb’s and Norman’s texts interest me because they conceptualize iconic 1960s technologies—especially the Buckminster Fuller-inspired geodesic dome and the Volkswagen van—not as inherently alienating machines but as tools of profound individual, social and environmental transformation. Synthesizing antimodernist back-to-nature desires with modernist enthusiasm for (certain kinds of) machinery, these texts adumbrate a humanity- and modernity-centered post-wilderness model of environmentalism that resonates with the dilemmas that we face in our increasingly resource-impoverished, rapidly warming and densely populated world.


Author(s):  
Christian Frilund ◽  
Esa Kurkela ◽  
Ilkka Hiltunen

AbstractFor the realization of small-scale biomass-to-liquid (BTL) processes, low-cost syngas cleaning remains a major obstacle, and for this reason a simplified gas ultracleaning process is being developed. In this study, a low- to medium-temperature final gas cleaning process based on adsorption and organic solvent-free scrubbing methods was coupled to a pilot-scale staged fixed-bed gasification facility including hot filtration and catalytic reforming steps for extended duration gas cleaning tests for the generation of ultraclean syngas. The final gas cleaning process purified syngas from woody and agricultural biomass origin to a degree suitable for catalytic synthesis. The gas contained up to 3000 ppm of ammonia, 1300 ppm of benzene, 200 ppm of hydrogen sulfide, 10 ppm of carbonyl sulfide, and 5 ppm of hydrogen cyanide. Post-run characterization displayed that the accumulation of impurities on the Cu-based deoxygenation catalyst (TOS 105 h) did not occur, demonstrating that effective main impurity removal was achieved in the first two steps: acidic water scrubbing (AWC) and adsorption by activated carbons (AR). In the final test campaign, a comprehensive multipoint gas analysis confirmed that ammonia was fully removed by the scrubbing step, and benzene and H2S were fully removed by the subsequent activated carbon beds. The activated carbons achieved > 90% removal of up to 100 ppm of COS and 5 ppm of HCN in the syngas. These results provide insights into the adsorption affinity of activated carbons in a complex impurity matrix, which would be arduous to replicate in laboratory conditions.


2021 ◽  
Vol 13 (11) ◽  
pp. 2074
Author(s):  
Ryan R. Reisinger ◽  
Ari S. Friedlaender ◽  
Alexandre N. Zerbini ◽  
Daniel M. Palacios ◽  
Virginia Andrews-Goff ◽  
...  

Machine learning algorithms are often used to model and predict animal habitat selection—the relationships between animal occurrences and habitat characteristics. For broadly distributed species, habitat selection often varies among populations and regions; thus, it would seem preferable to fit region- or population-specific models of habitat selection for more accurate inference and prediction, rather than fitting large-scale models using pooled data. However, where the aim is to make range-wide predictions, including areas for which there are no existing data or models of habitat selection, how can regional models best be combined? We propose that ensemble approaches commonly used to combine different algorithms for a single region can be reframed, treating regional habitat selection models as the candidate models. By doing so, we can incorporate regional variation when fitting predictive models of animal habitat selection across large ranges. We test this approach using satellite telemetry data from 168 humpback whales across five geographic regions in the Southern Ocean. Using random forests, we fitted a large-scale model relating humpback whale locations, versus background locations, to 10 environmental covariates, and made a circumpolar prediction of humpback whale habitat selection. We also fitted five regional models, the predictions of which we used as input features for four ensemble approaches: an unweighted ensemble, an ensemble weighted by environmental similarity in each cell, stacked generalization, and a hybrid approach wherein the environmental covariates and regional predictions were used as input features in a new model. We tested the predictive performance of these approaches on an independent validation dataset of humpback whale sightings and whaling catches. These multiregional ensemble approaches resulted in models with higher predictive performance than the circumpolar naive model. These approaches can be used to incorporate regional variation in animal habitat selection when fitting range-wide predictive models using machine learning algorithms. This can yield more accurate predictions across regions or populations of animals that may show variation in habitat selection.


Atmosphere ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 179
Author(s):  
Said Munir ◽  
Martin Mayfield ◽  
Daniel Coca

Small-scale spatial variability in NO2 concentrations is analysed with the help of pollution maps. Maps of NO2 estimated by the Airviro dispersion model and land use regression (LUR) model are fused with measured NO2 concentrations from low-cost sensors (LCS), reference sensors and diffusion tubes. In this study, geostatistical universal kriging was employed for fusing (integrating) model estimations with measured NO2 concentrations. The results showed that the data fusion approach was capable of estimating realistic NO2 concentration maps that inherited spatial patterns of the pollutant from the model estimations and adjusted the modelled values using the measured concentrations. Maps produced by the fusion of NO2-LCS with NO2-LUR produced better results, with r-value 0.96 and RMSE 9.09. Data fusion adds value to both measured and estimated concentrations: the measured data are improved by predicting spatiotemporal gaps, whereas the modelled data are improved by constraining them with observed data. Hotspots of NO2 were shown in the city centre, eastern parts of the city towards the motorway (M1) and on some major roads. Air quality standards were exceeded at several locations in Sheffield, where annual mean NO2 levels were higher than 40 µg/m3. Road traffic was considered to be the dominant emission source of NO2 in Sheffield.


2018 ◽  
Author(s):  
Gonzalo Duró ◽  
Alessandra Crosato ◽  
Maarten G. Kleinhans ◽  
Wim S. J. Uijttewaal

Abstract. Diverse methods are currently available to measure river bank erosion at broad-ranging temporal and spatial scales. Yet, no technique provides low-cost and high-resolution to survey small-scale bank processes along a river reach. We investigate the capabilities of Structure-from-Motion photogrammetry applied with imagery from an Unmanned Aerial Vehicle (UAV) to describe the evolution of riverbank profiles in middle-size rivers. The bank erosion cycle is used as a reference to assess the applicability of different techniques. We surveyed 1.2 km of a restored bank of the Meuse River eight times within a year, combining different photograph perspectives and overlaps to identify an efficient UAV flight to monitor banks. The accuracy of the Digital Surface Models (DSMs) was evaluated compared with RTK GPS points and an Airborne Laser Scanning (ALS) of the whole reach. An oblique perspective with eight photo overlaps was sufficient to achieve the highest relative precision to observation distance of ~1:1400, with 10 cm error range. A complementary nadiral view increased coverage behind bank toe vegetation. The DSM and ALS had comparable accuracies except on banks, where the latter overestimates elevations. Sequential DSMs captured signatures of the erosion cycle such as mass failures, slump-block deposition, and bank undermining. Although this technique requires low water levels and banks without dense vegetation, it is a low-cost method to survey reach-scale riverbanks in sufficient resolution to quantify bank retreat and identify morphological features of the bank failure and erosion processes.


2016 ◽  
Author(s):  
A. Ribeiro ◽  
C. Vilarinho ◽  
J. Araújo ◽  
J. Carvalho

The increasing of world population, industrialization and global consuming, existing market products existed in the along with diversification of raw materials, are responsible for an exponential increase of wastes. This scenario represents loss of resources and ultimately causes air, soils and water pollution. Therefore, proper waste management is currently one of the major challenges faced by modern societies. Textile industries represents, in Portugal, almost 10% of total productive transforming sector and 19% of total employments in the sector composed by almost 7.000 companies. One of the main environmental problems of textile industries is the production of significant quantities of wastes from its different processing steps. According to the Portuguese Institute of Statistics (INE) these industries produce almost 500.000 tons of wastes each year, with the textile cotton waste (TCW) being the most expressive. It was estimated that 4.000 tons of TCW are produced each year in Portugal. In this work an integrated TCW valorisation procedure was evaluated, firstly by its thermal and energetic valorisation with slow pyrolysis followed by the utilization of biochar by-product, in lead and chromium synthetic wastewater decontamination. Pyrolysis experiments were conducted in a small scale rotating pyrolysis reactor with 0.1 m3 of total capacity. Results of pyrolysis experiments showed the formation of 0,241 m3 of biogas for each kilogram of TCW. Results also demonstrated that the biogas is mostly composed by hydrogen (22%), methane (14 %), carbon monoxide (20%) and carbon dioxide (12%), which represents a total high calorific value of 12.3 MJ/Nm3. Regarding biochar, results of elemental analysis demonstrated a high percentage of carbon driving its use as low cost adsorbent. Adsorption experiments were conducted with lead and chromium synthetic wastewaters (25, 50 and 100 mg L−1) in batch vessels with controlled pH. It was evaluated the behaviour of adsorption capacity and removal rate of each metal during 120 minutes of contact time using 5, 10 and 50 g L−1 of adsorbent dosage. Results indicated high affinity of adsorbent with each tested metal with 78% of removal rate in chromium and 95% in lead experiments. This suggests that biochar from TCW pyrolysis may be appropriated to wastewaters treatment, with high contents of heavy metals and it can be an effective alternative to activated carbon.


Sign in / Sign up

Export Citation Format

Share Document