integrated circuitry
Recently Published Documents


TOTAL DOCUMENTS

89
(FIVE YEARS 21)

H-INDEX

13
(FIVE YEARS 1)

2021 ◽  
Author(s):  
Brandon Joseph LaFever ◽  
Yuka Imamura Kawasawa ◽  
Ayako Ito ◽  
Fumiaki Imamura

Abstract Background : Chronic olfactory inflammation (COI) in conditions such as chronic rhinosinusitis significantly impairs the functional and anatomical components of the olfactory system. COI induced by intranasal administration of lipopolysaccharide (LPS) results in atrophy, gliosis, and pro-inflammatory cytokine production in the OB. Although chronic rhinosinusitis patients have smaller olfactory bulbs (OBs), the consequences of olfactory inflammation on OB neurons are largely unknown. Methods : In this study, we investigated the neurological consequence of COI on OB projection neurons, mitral cells (MCs) and tufted cells (TCs). To induce COI, we performed unilateral intranasal administration of LPS to mice for 4 and 10 weeks. Effects of COI on the OB were examined using RNA-sequencing approaches and immunohistochemical analyses. Results : We found that repeated LPS administration upregulated immune-related biological pathways in the OB after 4 weeks. We also determined that the length of TC lateral dendrites in the OB significantly decreased after 10 weeks of COI. The axon initial segment of TCs decreased in number and in length after 10 weeks of COI. The lateral dendrites and axon initial segments of MCs, however, were largely unaffected. In addition, dendritic arborization and axon initial segment reconstruction both took place following a 10-week recovery period. Conclusion : Our findings suggests that olfactory inflammation specifically affects TCs and their integrated circuitry, whereas MCs are potentially protected from this condition. This data demonstrates unique characteristics of the OBs ability to undergo neuroplastic changes in response to stress.


2021 ◽  
Vol 10 (1) ◽  
Author(s):  
Evelyn Díaz-Escobar ◽  
Thomas Bauer ◽  
Elena Pinilla-Cienfuegos ◽  
Ángela I. Barreda ◽  
Amadeu Griol ◽  
...  

AbstractHigh-index nanoparticles are known to support radiationless states called anapoles, where dipolar and toroidal moments interfere to inhibit scattering to the far field. In order to exploit the striking properties arising from these interference conditions in photonic integrated circuits, the particles must be driven in-plane via integrated waveguides. Here, we address the excitation of electric anapole states in silicon disks when excited on-chip at telecom wavelengths. In contrast to normal illumination, we find that the anapole condition—identified by a strong reduction of the scattering—does not overlap with the near-field energy maximum, an observation attributed to retardation effects. We experimentally verify the two distinct spectral regions in individual disks illuminated in-plane from closely placed waveguide terminations via far-field and near-field measurements. Our finding has important consequences concerning the use of anapole states and interference effects of other Mie-type resonances in high-index nanoparticles for building complex photonic integrated circuitry.


2021 ◽  
Vol 15 ◽  
Author(s):  
Dimitrios Firfilionis ◽  
Frances Hutchings ◽  
Reza Tamadoni ◽  
Darren Walsh ◽  
Mark Turnbull ◽  
...  

Neuromodulation is an established treatment for numerous neurological conditions, but to expand the therapeutic scope there is a need to improve the spatial, temporal and cell-type specificity of stimulation. Optogenetics is a promising area of current research, enabling optical stimulation of genetically-defined cell types without interfering with concurrent electrical recording for closed-loop control of neural activity. We are developing an open-source system to provide a platform for closed-loop optogenetic neuromodulation, incorporating custom integrated circuitry for recording and stimulation, real-time closed-loop algorithms running on a microcontroller and experimental control via a PC interface. We include commercial components to validate performance, with the ultimate aim of translating this approach to humans. In the meantime our system is flexible and expandable for use in a variety of preclinical neuroscientific applications. The platform consists of a Controlling Abnormal Network Dynamics using Optogenetics (CANDO) Control System (CS) that interfaces with up to four CANDO headstages responsible for electrical recording and optical stimulation through custom CANDO LED optrodes. Control of the hardware, inbuilt algorithms and data acquisition is enabled via the CANDO GUI (Graphical User Interface). Here we describe the design and implementation of this system, and demonstrate how it can be used to modulate neuronal oscillations in vitro and in vivo.


Materials ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4291
Author(s):  
Samane Kalhor ◽  
Majid Ghanaatshoar ◽  
Hannah J. Joyce ◽  
David A. Ritchie ◽  
Kazuo Kadowaki ◽  
...  

Plasmonics, as a rapidly growing research field, provides new pathways to guide and modulate highly confined light in the microwave-to-optical range of frequencies. We demonstrated a plasmonic slot waveguide, at the nanometer scale, based on the high-transition-temperature (Tc) superconductor Bi2Sr2CaCu2O8+δ (BSCCO), to facilitate the manifestation of chip-scale millimeter wave (mm-wave)-to-terahertz (THz) integrated circuitry operating at cryogenic temperatures. We investigated the effect of geometrical parameters on the modal characteristics of the BSCCO plasmonic slot waveguide between 100 and 800 GHz. In addition, we investigated the thermal sensing of the modal characteristics of the nanoscale superconducting slot waveguide and showed that, at a lower frequency, the fundamental mode of the waveguide had a larger propagation length, a lower effective refractive index, and a strongly localized modal energy. Moreover, we found that our device offered a larger SPP propagation length and higher field confinement than the gold plasmonic waveguides at broad temperature ranges below BSCCO’s Tc. The proposed device can provide a new route toward realizing cryogenic low-loss photonic integrated circuitry at the nanoscale.


2021 ◽  
Author(s):  
Ziyao Feng ◽  
Yang Liu ◽  
Lai Wang ◽  
Xiankai Sun

GigaScience ◽  
2020 ◽  
Vol 9 (12) ◽  
Author(s):  
Aspyn Palatnick ◽  
Bin Zhou ◽  
Elodie Ghedin ◽  
Michael C Schatz

Abstract Background Following the miniaturization of integrated circuitry and other computer hardware over the past several decades, DNA sequencing is on a similar path. Leading this trend is the Oxford Nanopore sequencing platform, which currently offers the hand-held MinION instrument and even smaller instruments on the horizon. This technology has been used in several important applications, including the analysis of genomes of major pathogens in remote stations around the world. However, despite the simplicity of the sequencer, an equally simple and portable analysis platform is not yet available. Results iGenomics is the first comprehensive mobile genome analysis application, with capabilities to align reads, call variants, and visualize the results entirely on an iOS device. Implemented in Objective-C using the FM-index, banded dynamic programming, and other high-performance bioinformatics techniques, iGenomics is optimized to run in a mobile environment. We benchmark iGenomics using a variety of real and simulated Nanopore sequencing datasets of viral and bacterial genomes and show that iGenomics has performance comparable to the popular BWA-MEM/SAMtools/IGV suite, without necessitating a laptop or server cluster. Conclusions iGenomics is available open source (https://github.com/stuckinaboot/iGenomics) and for free on Apple's App Store (https://apple.co/2HCplzr).


Technologies ◽  
2020 ◽  
Vol 8 (4) ◽  
pp. 61 ◽  
Author(s):  
Vassilis Alimisis ◽  
Christos Dimas ◽  
Georgios Pappas ◽  
Paul P. Sotiriadis

This work compares two design methodologies, emulating both AgCl electrode and skin tissue Cole models for testing and verification of electrical bio-impedance circuits and systems. The models are based on fractional-order elements, are implemented with active components, and capture bio-impedance behaviors up to 10 kHz. Contrary to passive-elements realizations, both architectures using analog filters coupled with adjustable transconductors offer tunability of the fractional capacitors’ parameters. The main objective is to build a tunable active integrated circuitry block that is able to approximate the models’ behavior and can be utilized as a Subject Under Test (SUT) and electrode equivalent in bio-impedance measurement applications. A tetrapolar impedance setup, typical in bio-impedance measurements, is used to demonstrate the performance and accuracy of the presented architectures via Spectre Monte-Carlo simulation. Circuit and post-layout simulations are carried out in 90-nm CMOS process, using the Cadence IC suite.


Sign in / Sign up

Export Citation Format

Share Document