scholarly journals The Effect of Incorporating Ceramic Particles with Different Morphologies on the Microstructure, Mechanical and Tribological Behavior of Hybrid TaC_ BN/AA2024 Nanocomposites

Coatings ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1560
Author(s):  
Emad Ismat Ghandourah ◽  
Essam B. Moustafa ◽  
Hossameldin Hussein ◽  
Ahmed O. Mosleh

Improving the mechanical durability and wear resistance of aluminum alloys is a research challenge that can be solved by their reinforcement with ceramics. This article is concerned with the improvement of the mechanical properties and wear resistance of the AA2024 aluminum alloy surface. Surface composites were prepared by incorporating a hybrid of heavy particles (tantalum carbide (TaC), light nanoparticles, and boron nitride (BN)) into the AA2024 alloy using the friction stir process (FSP) approach. Three pattern holes were milled in the base metal to produce the composites with different volume fractions of the reinforcements. The effects of the FSP and the reinforcements on the microstructure, mechanical properties, and wear resistance are investigated. In addition to the FSP, the reinforced particles contributed to greater grain refinement. The rolled elongated grains became equiaxed ultrafine grains reaching 6 ± 1 µm. The refinement and acceptable distribution in the reinforcements significantly improved the hardness and wear resistance of the produced composites. Overall, the hardness was increased by 60% and the wear resistance increased by 40 times compared to the base alloy.

Author(s):  
Behrouz Bagheri ◽  
Amin Abdollahzadeh ◽  
Farzaneh Sharifi ◽  
Mahmoud Abbasi ◽  
Ahmad Ostovari Moghaddam

In this paper, the effect of mechanical vibration with reinforcement particles namely Silicon Carbide (SiC) on microstructure, mechanical properties, wear, and corrosion behaviors of aluminum alloy surface composites fabricated via friction stir processing (FSP) was investigated. The method was entitled friction stir vibration process (FSVP). The results revealed that recrystallized fine grains formed in all processing samples as a result of dynamic recovery and recrystallization, while samples processed in friction stir vibration processing resulted in better grain refinement in the stir zone than in conventional friction stir processing. Compared to conventional friction stir processing, in friction stir vibration processing, the hardness and tensile strength increased due to microstructure modification and better reinforcing distribution. From corrosion analysis, the corrosion resistance of the friction stir vibration processed samples showed a significant increase compared to the friction stir processed specimens. The wear results indicated that the wear resistance of friction stir vibration processed specimens is higher than friction stir processed specimens due to the development of smaller grains and a more homogenous distribution of the strengthening particles as the vibration is applied.


2021 ◽  
Vol 65 (1) ◽  
pp. 1-11
Author(s):  
R. Premkumar ◽  
R. V. Vignesh ◽  
R. Padmanaban ◽  
M. Govindaraju ◽  
R. Santhi

Abstract Aluminum alloy AA1100 has less wear resistance and mechanical properties than that of other aluminum alloys. This research work is on the fabrication of surface composites of AA1100 alloy by friction stir processing (FSP). The surface composites are fabricated by reinforcing hBN (hexagonal Boron Nitride) in AA1100 alloy to improve the mechanical and tribological properties. The influence of process parameters, rotational speed (rpm), and transverse speed (mm/min) on the microstructural evolution and properties of the fabricated surface composites is investigated.


2020 ◽  
Vol 44 (4) ◽  
pp. 295-300
Author(s):  
Sanjay Kumar ◽  
Ashish Kumar Srivastava ◽  
Rakesh Kumar Singh

Friction stir processing is an avant-garde technique of producing new surface composite or changing the different properties of a material through intense, solid-state localized material plastic deformation. This change in properties depends upon the deformation formed by inserting a non-consumable revolving tool into the workpiece and travels laterally through the workpiece. This research work highlights the effect of process parameters on mechanical properties of fabricated surface composites by friction stir processing. By using various reinforcing materials like Ti, SiC, B4C, Al2O3 with waste elements like waste eggshells, rice husks, coconut shell and coir will be used to fabricate the green composites which are environmentally friendly and reduces the problem of decomposition. The parameter for this experiment is considered as the reinforcing materials, tool rotation speed and tool tilt angle. The SiC/Al2O3/Ti along with eggshell are selected asreinforcement materials. The main effect of the reinforcement is to improve mechanical properties, like hardness, impact strength and strength. The results revealed that the process parameters significantly affect the mechanical properties of friction stir processed surface composites.


Coatings ◽  
2019 ◽  
Vol 9 (12) ◽  
pp. 830 ◽  
Author(s):  
Namdev Ashok Patil ◽  
Srinivasa Rao Pedapati ◽  
Othman Bin Mamat ◽  
Abdul Munir Hidayat Syah Lubis

Friction stir processing (FSP) has evolved as an important technique in fabrication of metal matrix composites. The surface properties enhancement is obtainable by insertion of desired discontinuous particular reinforcements into base alloy using FSP. Despite having high specific strength, more applications of Al alloys are restricted due to their poor surface properties under various loading conditions. In this study, the main focus is on enhancing the microhardness and wear properties of Al 7075 base alloy by means of uniform dispersion of silicon carbide and graphite (SiC/Gr) nano particles into the base alloy using the FSP technique. The tool rotational speed (w: 500, 1000, 1500 rpm), tool traverse speed (v: 20, 30, 40 mm/min), reinforcement particles hybrid ratio (HR: 60:40, 75:25, 90:10) and volume percentage (vol%: 4%, 8%, 12%) are used as independent parameters. The effect of these parameters on microstructure, micro hardness and wear properties of surface composites are studied in detail. For desired wear rate and microhardness as responses, the aforementioned independent parameters are optimized using response surface methodology (RSM). The significance of factors and their interactions for maximizing hardness and minimizing wear rate and coefficient of friction (COF) were determined. Analysis of variance (ANOVA) for responses has been carried out, and the models were found to be significant in all three responses. The minimum wear rate of 0.01194 mg/m was obtained for parameters w 1500 rpm, v 40 mm/min, HR 60:40, vol% 4 (Run 10). The maximum micro hardness of 300 HV obtained for parameters w 1000 rpm, v 30 mm/min, HR 75:25, vol% 12 (Run 14). The presence and uniform distribution of SiC and Gr into the base alloy was confirmed through field-emission scanning electron microscopy (FESEM) imaging, energy-dispersive X-ray spectroscopy (EDX) and mapping tests. The wear rate and COF decreased significantly due to graphitized mechanically mixed layer developed at the sliding contacts. The microhardness of resultant composites observed to be dependent on effect of the independent parameters on extent of inherent precipitates dissolution and grain size strengthening in the resultant materials.


Sign in / Sign up

Export Citation Format

Share Document