Aerial Robotic Systems Drones for Contact-Based Ultrasonic Wall Thickness UT Measurements at Height

2021 ◽  
Author(s):  
Robert L. Dahlstrom

Abstract The use of aerial robotic systems that physically contact oil and gas structural assets to obtain measurement data in offshore and marine environments carries unique challenges and operational variables. The objectives of this paper are to demonstrate, with examples, how these aerial robotic systems afford safer, cheaper, and better nondestructive testing (NDT) measurement collection methodology and allow more robust insight into assets conditions than the slower, less safe, and more expensive manual method. To take NDT measurements such as Ultrasonic Wall Thickness (UT) Measurements at height, currently one needs to utilize a lift, ladders or other solutions to reach areas on certain assets. This can be both dangerous, due to the possibility of falls, and time consuming. Utilizing an aerial robotics platform for contact based (not visual) NDT measurements such as Ultrasonic Thickness (UT) allows workers to remain safely on the ground. Drones, with robotic arms, have the potential to improve inspection, testing and data collection. This paper explores an aerial robotic system that flies up to a structure with a metal sub-straight, then under full autonomous software control, touches a UT measurement probe to the target and records the measurement data compliant with American Petrolium Institute (API) and other standards. The use of aerial robotics systems for NDT is still a new and novel application utilizing existing technologies such as electronic measurement readers, drones, etc. with a system of complex integrations that allows for a better application of science. Aerial Robotic NDT systems have the potential to improve the inspection, testing and data collection aspects of coated and uncoated assets, in part, by making the NDT measurement process easier and safer thus allowing for more frequent measurements and/or a larger quantity of measurement samples. When possible, working at heights should be eliminated as part the hierarchy of fall protection stipulated by both OSHA and ANSI. For this reason alone, the use of aerial robotic systems is important now and in the immediate future Oil & Gas infrastructure, including Offshore. This paper intends to provide readers an awareness of this new technology as well as provide information about its efficacy, limitations and operational requirements.

2021 ◽  
Author(s):  
Bulat Ganiev ◽  
Azat Lutfullin ◽  
Ildar Karimov ◽  
Rinat Shaydullin ◽  
Vener Nagimov ◽  
...  

Abstract The paper presents a new technology for the oil and gas industry for azimuthal electromagnetic scanning of the first tubular wall defects, the basis of which is a small-sized sector scanning tool that measures the pipe wall thickness. The paper presents the results of laboratoryand well tests, as well as the early field surveys using this technology. These constitute thebasis on which the actual sensitivity of the technology and its prospects in diagnosing well integrity are determined.


2020 ◽  
pp. 027347532096050
Author(s):  
Eileen Bridges

This article looks back over the past two decades to describe how teaching of undergraduate marketing research has (or has not) changed. Sweeping changes in technology and society have certainly affected how marketing research is designed and implemented—but how has this affected teaching of this important topic? Although the purpose of marketing research is still to better understand target customer needs, the tools are different now: customer data are typically collected using technology-based interfaces in place of such instruments as mailed, telephone, or in-person surveys. Observational techniques collect more data electronically rather than requiring a human recorder. Similarly, sampling has changed: sample frames are no longer widely used. Many of these changes are not yet fully discussed in marketing research courses. On the other hand, there is increasing interest in and availability of courses and programs in marketing data analytics, which teach specialized skills related to analysis and interpretation of electronic databases. Perhaps even more importantly, new technology-based tools permit greater automation of data collection and analysis, and presentation of findings. A critical gap is identified in this article; specifically, effort is needed to better integrate the perspectives of data collection and data analysis given current research conditions.


Author(s):  
Graeme G. King ◽  
Satish Kumar

Masdar is developing several carbon capture projects from power plants, smelters, steel works, industrial facilities and oil and gas processing plants in Abu Dhabi in a phased series of projects. Captured CO2 will be transported in a new national CO2 pipeline network with a nominal capacity of 20×106 T/y to oil reservoirs where it will be injected for reservoir management and sequestration. Design of the pipeline network considered three primary factors in the selection of wall thickness and toughness, (a) steady and transient operating conditions, (b) prevention of longitudinal ductile fractures and (c) optimization of total project owning and operating costs. The paper explains how the three factors affect wall thickness and toughness. It sets out code requirements that must be satisfied when choosing wall thickness and gives details of how to calculate toughness to prevent propagation of long ductile fracture in CO2 pipelines. It then uses cost optimization to resolve contention between the different requirements and arrive at a safe and economical pipeline design. The design work selected a design pressure of 24.5 MPa, well above the critical point for CO2 and much higher than is normally seen in conventional oil and gas pipelines. Despite its high operating pressure, the proposed network will be one of the safest pipeline systems in the world today.


2021 ◽  
Author(s):  
Niels Pörtzgen ◽  
Ola Bachke Solem

Abstract During the construction of pipelines for the transportation of oil and gas, the inspection of girth welds is a critical step to ensure the integrity and thereby the safety and durability of the pipeline. In this paper we present an advanced technology ‘IWEX’ for the non-destructive testing of welds based on 2D and 3D ultrasonic imaging. This technology allows for safe, fast, and accurate inspection whereby the results are presented comprehensively. This will be illustrated with results from a recent project. The IWEX technology is based on an ultrasonic inspection concept, whereby ‘fingerprints’ of ultrasonic signals are recorded, also referred to as ‘full matrix capture’ (FMC) data. Then, an image area is defined, consisting out of pixels over an area large enough to cover the inspection volume. With the FMC data, image amplitudes are calculated for each pixel so that the shape of geometry (back wall, front wall, cap, and root) and possible indications are revealed. As opposed to traditional ultrasonic testing strategies, the detection and sizing of indications is therefore less dependent on its orientation. The project concerned the inspection of J and V welds from a 5.56″ diameter carbon steel pipe with an 8.4mm wall thickness. The wall thickness is relatively thin compared to common inspection scopes. Therefore, the inspection set-up was adapted, and procedural changes were proposed. Consequently, additional validation efforts were required to demonstrate compliance with the required inspection standard; DNVGL-ST-F101: 2017. As part of this, welds were scanned with seeded indications and the reported locations were marked for macro slicing under witnessing of an independent representative from DNVGL. The resulting images from the indications in the welds showed great detail with respect to the position, orientation and height of the indications. A quantitative comparison with the results from the macro slices was performed, including a statistical analysis of the height sizing and depth positioning accuracies. From the analysis, it could be observed that the expected improvements with respect to the resolution and sizing accuracy were indeed achieved. Thereby, the procedure has proven to be adequate for the inspection of carbon steel girth welds within the thin wall thickness range (~6mm to ~15mm). The IWEX technology is a member of the upcoming inspection strategy based on imaging of ultrasonic FMC data. This strategy can be considered as the next step in the evolution of inspection strategies after phased array inspection. The IWEX technology has been witnessed and qualified by independent 3rd parties like DNVGL, this makes the IWEX technology unique in its kind and it opens opportunities for further acceptance in the industry and other inspection applications.


Environments ◽  
2020 ◽  
Vol 7 (4) ◽  
pp. 25
Author(s):  
Adam Pacsi ◽  
David W. Sullivan ◽  
David T. Allen

A variety of liquid unloading techniques are used to clear accumulated liquids from the wellbore to increase production rates for oil and gas wells. Data from national measurement studies indicate that a small subset of wells with plunger lift assist, that vent with high frequency and short event duration, contribute a significant fraction of methane emissions from liquid unloading activities in the United States. Compared to direct measurement of emissions at 24 wells in a field campaign, the most commonly used engineering emission estimate for this source category, which is based on the volume of gas in the wellbore, does not accurately predict emissions at the individual well (R2 = 0.06). An alternative emission estimate is proposed that relies on the duration of the venting activity and the gas production rate of the well, which has promising statistical performance characteristics when compared to direct measurement data. This work recommends well parameters that should be collected from future field measurement campaigns that are focused on this emission source.


2016 ◽  
Vol 28 (4) ◽  
pp. 353-364 ◽  
Author(s):  
Peter Lipar ◽  
Irena Strnad ◽  
Martin Česnik ◽  
Tomaž Maher

This paper presents GIS-based methodology for urban area driving cycle construction. The approach reaches beyond the frames of usual driving cycle development methods and takes into account another perspective of data collection. Rather than planning data collection, the approach is based on available in-vehicle measurement data post processing using Geographic Information Systems to manipulate the excessive database and extract only the representative and geographically limited individual trip data. With such data post processing the data was carefully adjusted to include only the data that describe representative driving in Ljubljana urban area. The selected method for the driving cycle development is based on searching for the best microtrips combination while minimizing the difference between two vectors; one based on generated cycle and the other on the database. Accounting for a large random sample of actual trip data, our approach enables more representative area-specific driving cycle development than the previously used techniques.


Author(s):  
B.M. Das ◽  
D. Dutta

Nanotechnology encompasses the science and technology of objects with sizes ranging from 1 nm to 100 nm. Today, exploration and production from conventional oil and gas wells have reached a stage of depletion. Newer technologies have been developed to address this problem. Maximum oil production at a minimum cost is currently a huge challenge. This paper reviews nanotechnology applications in the oil and gas production sector, including in the fields of exploration, drilling, production, and waste management in oil fields, as well as their environmental concerns. The paper reviews experimental observations carried out by various researchers in these fields. The effect of various nanoparticles, such as titanium oxide, magnesium oxide, zinc oxide, copper oxide, and carbon nanotubes in drilling fluids and silica nanoparticles in enhanced oil recovery, has been observed and studied. This paper gives a detailed review of the benefits of nanotechnology in oil exploration and production. The fusion of nanotechnology and petroleum technology can result in great benefits. The physics and chemistry of nanoparticles and nanostructures are very new to petroleum technology. Due to the greater risk associated with adapting new technology, nanotechnology has been slow to gain widespread acceptance in the oil and gas industries. However, the current economic conditions have become a driving force for newer technologies.


Sign in / Sign up

Export Citation Format

Share Document