scholarly journals Evaluating the Detection of Mesoscale Outflow Boundaries Using Scatterometer Winds at Different Spatial Resolutions

2021 ◽  
Vol 13 (7) ◽  
pp. 1334
Author(s):  
Georgios Priftis ◽  
Timothy J. Lang ◽  
Piyush Garg ◽  
Stephen W. Nesbitt ◽  
Richard D. Lindsley ◽  
...  

Outflow boundaries induced by cold-pools are a key characteristic of convective systems related to microphysical and kinematic processes during the mature stage of their lifecycle. Over the ocean, such kinematic processes are associated with low-level wind modulations that are captured by scatterometers. This study investigates the ability of the Advanced Scatterometer (ASCAT) wind retrievals to detect the outflow boundary associated with an oceanic mesoscale convective system (MCS). Leveraging a new technique to identify cold pools that is based on features that enclose elevated magnitude of the gradient of the wind, termed as `Gradient Feature’ (GF), wind retrievals at 50-, 25- and 7-km spatial resolution were utilized to explore how the characteristics of the outflow boundary vary with resolution. Ground-based radar retrievals were also implemented to assess and correct, when possible, the performance of the ASCAT retrievals. The magnitude of the gradient of the wind for the coarser resolution was an order of magnitude smaller (10−4 s−1) than the finer ones (10−3 s−1). An increase in the magnitude of the gradient wind field associated with the outflow boundary was captured by all resolutions and a respective feature was identified by the GF method. The location of the features relative to the distance from the front edge of the MCS decreased with resolution, indicating the importance of the high resolution ASCAT product to capture their extent, as well as additional smaller scale features. The effect of the background wind field on the selection of the final wind field during the ambiguity removal process for the high-resolution product is also discussed.

2019 ◽  
Vol 148 (1) ◽  
pp. 183-209 ◽  
Author(s):  
Matthew D. Parker ◽  
Brett S. Borchardt ◽  
Rachel L. Miller ◽  
Conrad L. Ziegler

Abstract The 25–26 June 2015 nocturnal mesoscale convective system (MCS) from the Plains Elevated Convection at Night (PECAN) field project produced severe winds within an environment that might customarily be associated with elevated convection. This work incorporates both a full-physics real-world simulation and an idealized single-sounding simulation to explore the MCS’s evolution. Initially, the simulated convective systems were elevated, being maintained by wavelike disturbances and lacking surface cold pools. As the systems matured, surface outflows began to appear, particularly where heavy precipitation was occurring, with air in the surface cold pools originating from up to 4–5 km AGL. Via this progression, the MCSs exhibited a degree of self-organization (i.e., structures that are dependent upon an MCS’s particular history). The cold pools eventually became 1.5–3.5 km deep, by which point passive tracers revealed that the convection was at least partly surface based. Soon after becoming surface based, both simulations produced severe surface winds, the strongest of which were associated with embedded low-level mesovortices and their attendant outflow surges and bowing segments. The origin of the simulated mesovortices was likely the downward tilting of system-generated horizontal vorticity (from baroclinity, but also possibly friction) within the simulated MCSs’ outflow, as has been argued in a number of previous studies. Taken altogether, it appears that severe nocturnal MCSs may often resemble their cold pool-driven, surface-based afternoon counterparts.


2009 ◽  
Vol 9 (5) ◽  
pp. 1671-1678 ◽  
Author(s):  
S. Davolio ◽  
D. Mastrangelo ◽  
M. M. Miglietta ◽  
O. Drofa ◽  
A. Buzzi ◽  
...  

Abstract. During the MAP D-PHASE (Mesoscale Alpine Programme, Demonstration of Probabilistic Hydrological and Atmospheric Simulation of flood Events in the Alpine region) Operational Period (DOP, 1 June–30 November 2007) the most intense precipitation event observed south of the Alps occurred over the Venice Lagoon. In the early morning of 26 September 2007, a mesoscale convective system formed in an area of convergence between a south-easterly low level jet flowing along the Adriatic Sea and a north-easterly barrier-type wind south of the Alps, and was responsible for precipitation exceeding 320 mm in less than 12 h, 240 mm of which in only 3 h. The forecast rainfall fields, provided by several convection resolving models operated daily for the D-PHASE project, have been compared. An analysis of different aspects of the event, such as the relevant mechanisms leading to the flood, the main characteristics of the MCS, and an estimation of the predictability of the episode, has been performed using a number of high resolution, convection resolving models (MOLOCH, WRF and MM5). Strong sensitivity to initial and boundary conditions and to model parameterization schemes has been found. Although low predictability is expected due to the convective nature of rainfall, the forecasts made more than 24 h in advance indicate that the larger scale environment driving the dynamics of this event played an important role in favouring the achievement of a relatively good accuracy in the precipitation forecasts.


Atmosphere ◽  
2020 ◽  
Vol 11 (4) ◽  
pp. 384
Author(s):  
John R. Lawson ◽  
William A. Gallus ◽  
Corey K. Potvin

The bow echo, a mesoscale convective system (MCS) responsible for much hail and wind damage across the United States, is associated with poor skill in convection-allowing numerical model forecasts. Given the decrease in convection-allowing grid spacings within many operational forecasting systems, we investigate the effect of finer resolution on the character of bowing-MCS development in a real-data numerical simulation. Two ensembles were generated: one with a single domain of 3-km horizontal grid spacing, and another nesting a 1-km domain with two-way feedback. Ensemble members were generated from their control member with a stochastic kinetic-energy backscatter scheme, with identical initial and lateral-boundary conditions. Results suggest that resolution reduces hindcast skill of this MCS, as measured with an adaptation of the object-based Structure–Amplitude–Location method. The nested 1-km ensemble produces a faster system than in both the 3-km ensemble and observations. The nested 1-km simulation also produced stronger cold pools, which could be enhanced by the increased (fractal) cloud surface area with higher resolution, allowing more entrainment of dry air and hence increased evaporative cooling.


2006 ◽  
Vol 134 (3) ◽  
pp. 950-964 ◽  
Author(s):  
Richard P. James ◽  
Paul M. Markowski ◽  
J. Michael Fritsch

Abstract Bow echo development within quasi-linear convective systems is investigated using a storm-scale numerical model. A strong sensitivity to the ambient water vapor mixing ratio is demonstrated. Relatively dry conditions at low and midlevels favor intense cold-air production and strong cold pool development, leading to upshear-tilted, “slab-like” convection for various magnitudes of convective available potential energy (CAPE) and low-level shear. High relative humidity in the environment tends to reduce the rate of production of cold air, leading to weak cold pools and downshear-tilted convective systems, with primarily cell-scale three-dimensionality in the convective region. At intermediate moisture contents, long-lived, coherent bowing segments are generated within the convective line. In general, the scale of the coherent three-dimensional structures increases with increasing cold pool strength. The bowing lines are characterized in their developing and mature stages by segments of the convective line measuring 15–40 km in length over which the cold pool is much stronger than at other locations along the line. The growth of bow echo structures within a linear convective system appears to depend critically on the local strengthening of the cold pool to the extent that the convection becomes locally upshear tilted. A positive feedback process is thereby initiated, allowing the intensification of the bow echo. If the environment favors an excessively strong cold pool, however, the entire line becomes uniformly upshear tilted relatively quickly, and the along-line heterogeneity of the bowing line is lost.


2019 ◽  
Vol 147 (6) ◽  
pp. 2283-2306 ◽  
Author(s):  
Mateusz Taszarek ◽  
Natalia Pilguj ◽  
Juliusz Orlikowski ◽  
Artur Surowiecki ◽  
Szymon Walczakiewicz ◽  
...  

Abstract This study documents atmospheric conditions, development, and evolution of a severe weather outbreak that occurred on 11 August 2017 in Poland. The emphasis is on analyzing system morphology and highlighting the importance of a mesovortex in producing the most significant wind damages. A derecho-producing mesoscale convective system (MCS) had a remarkable intensity and was one of the most impactful convective storms in the history of Poland. It destroyed and partially damaged 79 700 ha of forest (9.8 million m3 of wood), 6 people lost their lives, and 58 were injured. The MCS developed in an environment of high 0–3-km wind shear (20–25 m s−1), strong 0–3-km storm relative helicity (200–600 m2 s−2), moderate most-unstable convective available potential energy (1000–2500 J kg−1), and high precipitable water (40–46 mm). Within the support of a midtropospheric jet, the MCS moved northeast with a simultaneous northeastward inflow of warm and very moist air, which contributed to strong downdrafts. A mesocyclone embedded in the convective line induced the rear inflow jet (RIJ) to descend and develop a bow echo. In the mature stage, a supercell evolved into a bookend vortex and later into a mesoscale convective vortex. Swaths of the most significant wind damage followed the aforementioned vortex features. A high-resolution simulation performed with initial conditions derived from GFS and ECMWF global models predicted the possibility of a linear MCS with widespread damaging wind gusts and embedded supercells. Simulations highlighted the importance of cloud cover in the preconvective environment, which influenced the placement and propagation of the resulting MCS.


2010 ◽  
Vol 138 (4) ◽  
pp. 1119-1139 ◽  
Author(s):  
Robert J. Conzemius ◽  
Michael T. Montgomery

Abstract A set of multiscale, nested, idealized numerical simulations of mesoscale convective systems (MCSs) and mesoscale convective vortices (MCVs) was conducted. The purpose of these simulations was to investigate the dependence of MCV development and evolution on background conditions and to explore the relationship between MCVs and larger, moist baroclinic cyclones. In all experiments, no mesoscale convective system (MCS) developed until a larger-scale, moist baroclinic system with surface pressure amplitude of at least 2 hPa was present. The convective system then enhanced the development of the moist baroclinic system by its diabatic production of eddy available potential energy (APE), which led to the enhanced baroclinic conversion of basic-state APE to eddy APE. The most rapid potential vorticity (PV) development occurred in and just behind the leading convective line. The entire system grew upscale with time as the newly created PV rotated cyclonically around a common center as the leading convective line continued to expand outward. Ten hours after the initiation of deep moist convection, the simulated MCV radii, heights of maximum winds, tangential velocity, and shear corresponded reasonably well to their counterparts in BAMEX. The increasing strength of the simulated MCVs with respect to larger values of background CAPE and shear supports the hypothesis that as long as convection is present, CAPE and shear both add to the strength of the MCV.


2009 ◽  
Vol 66 (3) ◽  
pp. 686-704 ◽  
Author(s):  
Christopher A. Davis ◽  
Thomas J. Galarneau

Abstract Simulations of two cases of developing mesoscale convective vortices (MCVs) are examined to determine the dynamics governing the origin and vertical structure of these features. Although one case evolves in strong vertical wind shear and the other evolves in modest shear, the evolutions are remarkably similar. In addition to the well-known mesoscale convergence that spins up vorticity in the midtroposphere, the generation of vorticity in the lower troposphere occurs along the convergent outflow boundary of the parent mesoscale convective system (MCS). Lateral transport of this vorticity from the convective region back beneath the midtropospheric vorticity center is important for obtaining a deep column of cyclonic vorticity. However, this behavior would be only transient without a secondary phase of vorticity growth in the lower troposphere that results from a radical change in the divergence profile favoring lower-tropospheric convergence. Following the decay of the nocturnal MCS, subsequent convection occurs in a condition of greater relative humidity through the lower troposphere and small conditional instability. Vorticity and potential vorticity are efficiently produced near the top of the boundary layer and a cyclonic circulation appears at the surface.


2011 ◽  
Vol 68 (10) ◽  
pp. 2306-2320 ◽  
Author(s):  
Stephen E. Lang ◽  
Wei-Kuo Tao ◽  
Xiping Zeng ◽  
Yaping Li

Abstract A well-known bias common to many bulk microphysics schemes currently being used in cloud-resolving models is the tendency to produce excessively large reflectivity values (e.g., 40 dBZ) in the middle and upper troposphere in simulated convective systems. The Rutledge and Hobbs–based bulk microphysics scheme in the Goddard Cumulus Ensemble model is modified to reduce this bias and improve realistic aspects. Modifications include lowering the efficiencies for snow/graupel riming and snow accreting cloud ice; converting less rimed snow to graupel; allowing snow/graupel sublimation; adding rime splintering, immersion freezing, and contact nucleation; replacing the Fletcher formulation for activated ice nuclei with that of Meyers et al.; allowing for ice supersaturation in the saturation adjustment; accounting for ambient RH in the growth of cloud ice to snow; and adding/accounting for cloud ice fall speeds. In addition, size-mapping schemes for snow/graupel were added as functions of temperature and mixing ratio, lowering particle sizes at colder temperatures but allowing larger particles near the melting level and at higher mixing ratios. The modifications were applied to a weakly organized continental case and an oceanic mesoscale convective system (MCS). Strong echoes in the middle and upper troposphere were reduced in both cases. Peak reflectivities agreed well with radar for the weaker land case but, despite improvement, remained too high for the MCS. Reflectivity distributions versus height were much improved versus radar for the less organized land case but not for the MCS despite fewer excessively strong echoes aloft due to a bias toward weaker echoes at storm top.


2015 ◽  
Vol 72 (6) ◽  
pp. 2507-2524 ◽  
Author(s):  
Russ S. Schumacher

Abstract Using a method for initiating a quasi-stationary, heavy-rain-producing elevated mesoscale convective system in an idealized numerical modeling framework, a series of experiments is conducted in which a shallow layer of drier air is introduced within the near-surface stable layer. The environment is still very moist in the experiments, with changes to the column-integrated water vapor of only 0.3%–1%. The timing and general evolution of the simulated convective systems are very similar, but rainfall accumulation at the surface is changed by a much larger fraction than the reduction in moisture, with point precipitation maxima reduced by up to 29% and domain-averaged precipitation accumulations reduced by up to 15%. The differences in precipitation are partially attributed to increases in the evaporation rate in the shallow subcloud layer, though this is found to be a secondary effect. More importantly, even though the near-surface layer has strong convective inhibition in all simulations and the convective available potential energy of the most unstable parcels is unchanged, convection is less intense in the experiments with drier subcloud layers because less air originating in that layer rises in convective updrafts. An additional experiment with a cooler near-surface layer corroborates these findings. The results from these experiments suggest that convective systems assumed to be elevated are, in fact, drawing air from near the surface unless the low levels are very stable. Considering that the moisture differences imposed here are comparable to observational uncertainties in low-level temperature and moisture, the strong sensitivity of accumulated precipitation to these quantities has implications for the predictability of extreme rainfall.


2020 ◽  
Author(s):  
Han-Gyul Jin ◽  
Jong-Jin Baik

<p>A new parameterization of the accretion of cloud water by snow for use in bulk microphysics schemes is derived by analytically solving the stochastic collection equation (SCE), where the theoretical collision efficiency for individual snowflake–cloud droplet pairs is applied. The snowflake shape is assumed to be nonspherical with the mass- and area-size relations suggested by an observational study. The performance of the new parameterization is compared to two parameterizations based on the continuous collection equation, one with the spherical shape assumption for snowflakes (SPH-CON), and the other with the nonspherical shape assumption employed in the new parameterization (NSP-CON). In box model simulations, only the new parameterization reproduces a relatively slow decrease in the cloud droplet number concentration which is predicted by the direct SCE solver. This results from considering the preferential collection of cloud droplets depending on their sizes in the new parameterization based on the SCE. In idealized squall-line simulations using a cloud-resolving model, the new parameterization predicts heavier precipitation in the convective core region compared to SPH-CON, and a broader area of the trailing stratiform rain compared to NSP-CON due to the horizontal advection of greater amount of snow in the upper layer. In the real-case simulations of a line-shaped mesoscale convective system that passed over the central Korean Peninsula, the new parameterization predicts higher frequencies of light precipitation rates and lower frequencies of heavy precipitation rates. The relatively large amount of upper-level snow in the new parameterization contributes to a broadening of the area with significant snow water path.</p>


Sign in / Sign up

Export Citation Format

Share Document