ty1 mobility
Recently Published Documents


TOTAL DOCUMENTS

8
(FIVE YEARS 2)

H-INDEX

4
(FIVE YEARS 1)

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Lauren A. Todd ◽  
Amanda C. Hall ◽  
Violena Pietrobon ◽  
Janet N. Y. Chan ◽  
Guillaume Laflamme ◽  
...  

Abstract Retrotransposons can represent half of eukaryotic genomes. Retrotransposon dysregulation destabilizes genomes and has been linked to various human diseases. Emerging regulators of retromobility include RNA–DNA hybrid-containing structures known as R-loops. Accumulation of these structures at the transposons of yeast 1 (Ty1) elements has been shown to increase Ty1 retromobility through an unknown mechanism. Here, via a targeted genetic screen, we identified the rnh1Δ rad27Δ yeast mutant, which lacked both the Ty1 inhibitor Rad27 and the RNA–DNA hybrid suppressor Rnh1. The mutant exhibited elevated levels of Ty1 cDNA-associated RNA–DNA hybrids that promoted Ty1 mobility. Moreover, in this rnh1Δ rad27Δ mutant, but not in the double RNase H mutant rnh1Δ rnh201Δ, RNA–DNA hybrids preferentially existed as duplex nucleic acid structures and increased Ty1 mobility in a Rad52-dependent manner. The data indicate that in cells lacking RNA–DNA hybrid and Ty1 repressors, elevated levels of RNA-cDNA hybrids, which are associated with duplex nucleic acid structures, boost Ty1 mobility via a Rad52-dependent mechanism. In contrast, in cells lacking RNA–DNA hybrid repressors alone, elevated levels of RNA-cDNA hybrids, which are associated with triplex nucleic acid structures, boost Ty1 mobility via a Rad52-independent process. We propose that duplex and triplex RNA–DNA hybrids promote transposon mobility via Rad52-dependent or -independent mechanisms.


2019 ◽  
Author(s):  
Wioletta Czaja ◽  
Douda Bensasson ◽  
Hyo Won Ahn ◽  
David J. Garfinkel ◽  
Casey M. Bergman

AbstractInsertion of mobile DNA sequences typically has deleterious effects on host fitness, and thus diverse mechanisms have evolved to control mobile element proliferation across the tree of life. Mobility of the Ty1 retrotransposon in Saccharomyces yeasts is regulated by a novel form of copy number control (CNC) mediated by a self-encoded restriction factor derived from the Ty1 gag capsid gene that inhibits virus-like particle function. Here, we survey a panel of wild and human-associated strains of S. cerevisiae and S. paradoxus to investigate how genomic Ty1 content influences variation in Ty1 mobility. We observe high levels of mobility for a canonical Ty1 tester element in permissive strains that either lack full-length Ty1 elements or only contain full-length copies of the Ty1’ subfamily that have a divergent gag sequence. In contrast, low levels of canonical Ty1 mobility are observed in restrictive strains carrying full-length Ty1 elements containing canonical gag. Phylogenomic analysis of full-length Ty1 elements revealed that Ty1’ is the ancestral subfamily present in wild strains of S. cerevisiae, and that canonical Ty1 in S. cerevisiae is a derived subfamily that acquired gag from S. paradoxus by horizontal transfer and recombination. Our results provide evidence that variation in the ability of S. cerevisiae and S. paradoxus strains to repress canonical Ty1 transposition via CNC is encoded by the genomic content of different Ty1 subfamilies, and that self-encoded forms of transposon control can spread across species boundaries by horizontal transfer.


Mobile DNA ◽  
2010 ◽  
Vol 1 (1) ◽  
pp. 23 ◽  
Author(s):  
John P O'Donnell ◽  
Marie Gehman ◽  
Jill B Keeney

2007 ◽  
Vol 27 (24) ◽  
pp. 8874-8885 ◽  
Author(s):  
M. Joan Curcio ◽  
Alison E. Kenny ◽  
Sharon Moore ◽  
David J. Garfinkel ◽  
Matthew Weintraub ◽  
...  

ABSTRACT The mobility of the Ty1 retrotransposon in the yeast Saccharomyces cerevisiae is restricted by a large collection of proteins that preserve the integrity of the genome during replication. Several of these repressors of Ty1 transposition (Rtt)/genome caretakers are orthologs of mammalian retroviral restriction factors. In rtt/genome caretaker mutants, levels of Ty1 cDNA and mobility are increased; however, the mechanisms underlying Ty1 hypermobility in most rtt mutants are poorly characterized. Here, we show that either or both of two S-phase checkpoint pathways, the replication stress pathway and the DNA damage pathway, partially or strongly stimulate Ty1 mobility in 19 rtt/genome caretaker mutants. In contrast, neither checkpoint pathway is required for Ty1 hypermobility in two rtt mutants that are competent for genome maintenance. In rtt101Δ mutants, hypermobility is stimulated through the DNA damage pathway components Rad9, Rad24, Mec1, Rad53, and Dun1 but not Chk1. We provide evidence that Ty1 cDNA is not the direct target of the DNA damage pathway in rtt101Δ mutants; instead, levels of Ty1 integrase and reverse transcriptase proteins, as well as reverse transcriptase activity, are significantly elevated. We propose that DNA lesions created in the absence of Rtt/genome caretakers trigger S-phase checkpoint pathways to stimulate Ty1 reverse transcriptase activity.


2005 ◽  
Vol 25 (17) ◽  
pp. 7459-7472 ◽  
Author(s):  
Anne-Laure Todeschini ◽  
Antonin Morillon ◽  
Mathias Springer ◽  
Pascale Lesage

ABSTRACT Ty1 retrotransposons of the yeast Saccharomyces cerevisiae are activated by different kinds of stress. Here we show that Ty1 transcription is stimulated under severe adenine starvation conditions. The Bas1 transcriptional activator, responsible for the induction of genes of the de novo AMP biosynthesis pathway (ADE) in the absence of adenine, is not involved in this response. Activation occurs mainly on Ty1 elements, whose expression is normally repressed by chromatin and is suppressed in a hta1-htb1Δ mutant that alters chromatin structure. Activation is also abolished in a snf2Δ mutant. Several regions of the Ty1 promoter are necessary to achieve full activation, suggesting that full integrity of the promoter sequences might be important for activation. Together, these observations are consistent with a model in which the activation mechanism involves chromatin remodeling at Ty1 promoters. The consequence of Ty1 transcriptional activation in response to adenine starvation is an increase in Ty1 cDNA levels and a relief of Ty1 dormancy. The retrotransposition of four native Ty1 elements increases in proportion to their increase in transcription. Implications for the regulation of Ty1 mobility by changes in Ty1 mRNA levels are discussed.


Genetics ◽  
2003 ◽  
Vol 163 (1) ◽  
pp. 55-67 ◽  
Author(s):  
Anuradha Sundararajan ◽  
Bum-Soo Lee ◽  
David J Garfinkel

Abstract Although most Ty1 elements in Saccharomyces cerevisiae are competent for retrotransposition, host defense genes can inhibit different steps of the Ty1 life cycle. Here, we demonstrate that Rad27, a structure-specific nuclease that plays an important role in DNA replication and genome stability, inhibits Ty1 at a posttranslational level. We have examined the effects of various rad27 mutations on Ty1 element retrotransposition and cDNA recombination, termed Ty1 mobility. The point mutations rad27-G67S, rad27-G240D, and rad27-E158D that cause defects in certain enzymatic activities in vitro result in variable increases in Ty1 mobility, ranging from 4- to 22-fold. The C-terminal frameshift mutation rad27-324 confers the maximum increase in Ty1 mobility (198-fold), unincorporated cDNA, and insertion at preferred target sites. The null mutation differs from the other rad27 alleles by increasing the frequency of multimeric Ty1 insertions and cDNA recombination with a genomic element. The rad27 mutants do not markedly alter the levels of Ty1 RNA or the TyA1-gag protein. However, there is an increase in the stability of unincorporated Ty1 cDNA in rad27-324 and the null mutant. Our results suggest that Rad27 inhibits Ty1 mobility by destabilizing unincorporated Ty1 cDNA and preventing the formation of Ty1 multimers.


Genetics ◽  
2001 ◽  
Vol 159 (4) ◽  
pp. 1449-1465 ◽  
Author(s):  
Derek T Scholes ◽  
Mukti Banerjee ◽  
Brian Bowen ◽  
M Joan Curcio

Abstract Most Ty1 retrotransposons in the genome of Saccharomyces cerevisiae are transpositionally competent but rarely transpose. We screened yeast mutagenized by insertion of the mTn3-lacZ/LEU2 transposon for mutations that result in elevated Ty1 cDNA-mediated mobility, which occurs by cDNA integration or recombination. Here, we describe the characterization of mTn3 insertions in 21 RTT (regulation of Ty1 transposition) genes that result in 5- to 111-fold increases in Ty1 mobility. These 21 RTT genes are EST2, RRM3, NUT2, RAD57, RRD2, RAD50, SGS1, TEL1, SAE2, MED1, MRE11, SCH9, KAP122, and 8 previously uncharacterized genes. Disruption of RTT genes did not significantly increase Ty1 RNA levels but did enhance Ty1 cDNA levels, suggesting that most RTT gene products act at a step after mRNA accumulation but before cDNA integration. The rtt mutations had widely varying effects on integration of Ty1 at preferred target sites. Mutations in RTT101 and NUT2 dramatically stimulated Ty1 integration upstream of tRNA genes. In contrast, a mutation in RRM3 increased Ty1 mobility >100-fold without increasing integration upstream of tRNA genes. The regulation of Ty1 transposition by components of fundamental pathways required for genome maintenance suggests that Ty1 and yeast have coevolved to link transpositional dormancy to the integrity of the genome.


2001 ◽  
Vol 21 (16) ◽  
pp. 5374-5388 ◽  
Author(s):  
Mary Bryk ◽  
Mukti Banerjee ◽  
Darryl Conte ◽  
M. Joan Curcio

ABSTRACT Ty1 retrotransposons in the yeast Saccharomyces cerevisiae are maintained in a genetically competent but transpositionally dormant state. When located in the ribosomal DNA (rDNA) locus, Ty1 elements are transcriptionally silenced by the specialized heterochromatin that inhibits rDNA repeat recombination. In addition, transposition of all Ty1 elements is repressed at multiple posttranscriptional levels. Here, we demonstrate that Sgs1, a RecQ helicase required for genome stability, inhibits the mobility of Ty1 elements by a posttranslational mechanism. Using an assay for the mobility of Ty1 cDNA via integration or homologous recombination, we found that the mobility of both euchromatic and rDNA-Ty1 elements was increased 32- to 79-fold in sgs1Δ mutants. Increased Ty1 mobility was not due to derepression of silent rDNA-Ty1 elements, since deletion of SGS1 reduced the mitotic stability of rDNA-Ty1 elements but did not stimulate their transcription. Furthermore, deletion of SGS1 did not significantly increase the levels of total Ty1 RNA, protein, or cDNA and did not alter the level or specificity of Ty1 integration. Instead, Ty1 cDNA molecules recombined at a high frequency in sgs1Δmutants, resulting in transposition of heterogeneous Ty1 multimers. Formation of Ty1 multimers required the homologous recombination protein Rad52 but did not involve recombination between Ty1 cDNA and genomic Ty1 elements. Therefore, Ty1 multimers that transpose at a high frequency in sgs1Δ mutants are formed by intermolecular recombination between extrachromosomal Ty1 cDNA molecules before or during integration. Our data provide the first evidence that the host cell promotes retrotransposition of monomeric Ty1 elements by repressing cDNA recombination.


Sign in / Sign up

Export Citation Format

Share Document