large exciton binding energy
Recently Published Documents


TOTAL DOCUMENTS

16
(FIVE YEARS 11)

H-INDEX

4
(FIVE YEARS 4)

2021 ◽  
pp. 2107468
Author(s):  
Hyun‐Soo Ra ◽  
Jongtae Ahn ◽  
Jisu Jang ◽  
Tae Wook Kim ◽  
Seung Ho Song ◽  
...  

2021 ◽  
Author(s):  
Eilho Jung ◽  
Jin Cheol Park ◽  
Yu-Seong Seo ◽  
Ji-Hee Kim ◽  
Jungseek Hwang ◽  
...  

Abstract Although large exciton binding energies of typically 0.6–1.0 eV are observed for monolayer transition metal dichalcogenides (TMDs) owing to strong Coulomb interaction, multilayered TMDs yield relatively low exciton binding energies owing to increased dielectric screening. Recently, the ideal carrier-multiplication threshold energy of twice the bandgap has been realized in multilayered semiconducting 2H-MoTe2 with a conversion efficiency of 99%, which suggests strong Coulomb interaction. However, the origin of strong Coulomb interaction in multilayered 2H-MoTe2, including the exciton binding energy, has not been elucidated to date. In this study, unusually large exciton binding energy is observed through optical spectroscopy conducted on CVD-grown 2H-MoTe2. To extract exciton binding energy, the optical conductivity is fitted using the Lorentz model to describe the exciton peaks and the Tauc–Lorentz model to describe the indirect and direct bandgaps. The exciton binding energy of 4 nm thick multilayered 2H-MoTe2 is approximately 300 meV, which is unusually large by one order of magnitude when compared with other multilayered TMD semiconductors such as 2H-MoS2 or 2H-MoSe2. This finding is interpreted in terms of small exciton radius based on the 2D Rydberg model. The exciton radius of multilayered 2H-MoTe2 resembles that of monolayer 2H-MoTe2, whereas those of multilayered 2H-MoS2 and 2H-MoSe2 are large when compared with monolayer 2H-MoS2 and 2H-MoSe2. From the large exciton binding energy in multilayered 2H-MoTe2, it is expected to realize the future applications such as room-temperature and high-temperature polariton lasing.


2021 ◽  
Author(s):  
Mi Hee Jung

Two dimensional (2D) perovskites have a large exciton binding energy due to the structure of the quantum confinement, which produces a faster radiative recombination, so it is a promising potential...


Nanoscale ◽  
2021 ◽  
Author(s):  
Guangrong Jin ◽  
Tanghao Liu ◽  
Yuanzhao Li ◽  
Jiadong Zhou ◽  
Dengliang Zhang ◽  
...  

Quasi-2D metal halide perovskites are promising candidates for light-emitting application owing to their large exciton binding energy and strong quantum confinement effect. Usually, quasi-2D perovskites are composed of multiple phases...


2020 ◽  
Vol 1 (1) ◽  
Author(s):  
Stephan Steinhauer ◽  
Marijn A. M. Versteegh ◽  
Samuel Gyger ◽  
Ali W. Elshaari ◽  
Birgit Kunert ◽  
...  

AbstractCuprous oxide (Cu2O) is a semiconductor with large exciton binding energy and significant technological importance in applications such as photovoltaics and solar water splitting. It is also a superior material system for quantum optics that enabled the observation of intriguing phenomena, such as Rydberg excitons as solid-state analogue to highly-excited atomic states. Previous experiments related to excitonic properties focused on natural bulk crystals due to major difficulties in growing high-quality synthetic samples. Here, the growth of Cu2O microcrystals with excellent optical material quality and very low point defect levels is presented. A scalable thermal oxidation process is used that is ideally suited for integration on silicon, demonstrated by on-chip waveguide-coupled Cu2O microcrystals. Moreover, Rydberg excitons in site-controlled Cu2O microstructures are shown, relevant for applications in quantum photonics. This work paves the way for the wide-spread use of Cu2O in optoelectronics and for the development of novel device technologies.


Nanoscale ◽  
2020 ◽  
Vol 12 (35) ◽  
pp. 18269-18277
Author(s):  
Pradip Kumar Roy ◽  
Rajesh Kumar Ulaganathan ◽  
Chinnambedu Murugesan Raghavan ◽  
Swapnil Milind Mhatre ◽  
Hung-I Lin ◽  
...  

Low threshold random lasing was observed in a millimeter-sized 2D single-crystalline perovskite microrod. The lower value of the threshold can be attributed to the strong light confinement, long mean free path and large exciton binding energy.


Sign in / Sign up

Export Citation Format

Share Document