scholarly journals Estrogens influence female itch sensitivity via the spinal gastrin-releasing peptide receptor neurons

2021 ◽  
Vol 118 (31) ◽  
pp. e2103536118
Author(s):  
Keiko Takanami ◽  
Daisuke Uta ◽  
Ken Ichi Matsuda ◽  
Mitsuhiro Kawata ◽  
Earl Carstens ◽  
...  

There are sex differences in somatosensory sensitivity. Circulating estrogens appear to have a pronociceptive effect that explains why females are reported to be more sensitive to pain than males. Although itch symptoms develop during pregnancy in many women, the underlying mechanism of female-specific pruritus is unknown. Here, we demonstrate that estradiol, but not progesterone, enhances histamine-evoked scratching behavior indicative of itch in female rats. Estradiol increased the expression of the spinal itch mediator, gastrin-releasing peptide (GRP), and increased the histamine-evoked activity of itch-processing neurons that express the GRP receptor (GRPR) in the spinal dorsal horn. The enhancement of itch behavior by estradiol was suppressed by intrathecal administration of a GRPR blocker. In vivo electrophysiological analysis showed that estradiol increased the histamine-evoked firing frequency and prolonged the response of spinal GRP-sensitive neurons in female rats. On the other hand, estradiol did not affect the threshold of noxious thermal pain and decreased touch sensitivity, indicating that estradiol separately affects itch, pain, and touch modalities. Thus, estrogens selectively enhance histamine-evoked itch in females via the spinal GRP/GRPR system. This may explain why itch sensation varies with estrogen levels and provides a basis for treating itch in females by targeting GRPR.

2010 ◽  
Vol 104 (1) ◽  
pp. 271-279 ◽  
Author(s):  
Junichi Hachisuka ◽  
Hidemasa Furue ◽  
Masutaka Furue ◽  
Megumu Yoshimura

Itching is a common symptom in dermatologic diseases and causes restless scratching of the skin, which aggravates the condition. The mechanism of the itch sensation, however, is enigmatic. The present study included behavioral tests and electrophysiological recordings from rat dorsal root ganglion (DRG) neurons in vivo to analyze the response to pruritic stimuli induced by topical application of 5-hydroxytryptamine (5-HT) to the skin. Topically applied 5-HT to the rostral back evoked scratching, whereas application of the vehicle did not. Following subcutaneous injection of the opioid receptor antagonist naloxone, the number of scratches decreased, suggesting that the scratching was preferentially mediated by itch but not pain sensation. To elucidate the firing properties of DRG neurons in response to topically applied 5-HT, intracellular recordings were made from DRG neurons in vivo. None of the Aβ and Aδ neurons responded to 5-HT; in contrast, 25 of 91 C neurons (27%) exhibited repetitive firing in response to 5-HT, which could be classified into two firing patterns: one was a transient type, characterized by low firing frequency that decreased within 5 min; the other was a long-lasting type, having high firing frequency that continued increasing after 5 min. The time course of the firing pattern of long-lasting C neurons was comparable to the scratching behavior. Intriguingly, the long-lasting-type neurons had a significantly smaller fast afterhyperpolarization than that of the 5-HT-insensitive neurons. These observations suggest that the long-lasting-firing C neurons in rat DRG sensitive to 5-HT are responsible for conveying pruritic information to the spinal cord.


2008 ◽  
Vol 190 (7) ◽  
pp. 2496-2504 ◽  
Author(s):  
Po-Chi Soo ◽  
Yu-Tze Horng ◽  
Jun-Rong Wei ◽  
Jwu-Ching Shu ◽  
Chia-Chen Lu ◽  
...  

ABSTRACT Serratia marcescens cells swarm at 30°C but not at 37°C, and the underlying mechanism is not characterized. Our previous studies had shown that a temperature upshift from 30 to 37°C reduced the expression levels of flhDCSm and hagSm in S. marcescens CH-1. Mutation in rssA or rssB, cognate genes that comprise a two-component system, also resulted in precocious swarming phenotypes at 37°C. To further characterize the underlying mechanism, in the present study, we report that expression of flhDCSm and synthesis of flagella are significantly increased in the rssA mutant strain at 37°C. Primer extension analysis for determination of the transcriptional start site(s) of flhDCSm revealed two transcriptional start sites, P1 and P2, in S. marcescens CH-1. Characterization of the phosphorylated RssB (RssB∼P) binding site by an electrophoretic mobility shift assay showed direct interaction of RssB∼P, but not unphosphorylated RssB [RssB(D51E)], with the P2 promoter region. A DNase I footprinting assay using a capillary electrophoresis approach further determined that the RssB∼P binding site is located between base pair positions −341 and −364 from the translation start codon ATG in the flhDCSm promoter region. The binding site overlaps with the P2 “−35” promoter region. A modified chromatin immunoprecipitation assay was subsequently performed to confirm that RssB∼P binds to the flhDCSm promoter region in vivo. In conclusion, our results indicated that activated RssA-RssB signaling directly inhibits flhDCSm promoter activity at 37°C. This inhibitory effect was comparatively alleviated at 30°C. This finding might explain, at least in part, the phenomenon of inhibition of S. marcescens swarming at 37°C.


2017 ◽  
Vol 232 (1) ◽  
pp. 97-105 ◽  
Author(s):  
Daniela Fernandois ◽  
Gonzalo Cruz ◽  
Eun Kyung Na ◽  
Hernán E Lara ◽  
Alfonso H Paredes

Previous work has demonstrated that the increase in the activity of sympathetic nerves, which occurs during the subfertility period in female rats, causes an increase in follicular cyst development and impairs follicular development. In addition, the increase in ovarian sympathetic activity of aged rats correlates with an increased expression of kisspeptin (KISS1) in the ovary. This increase in KISS1 could participate in the decrease in follicular development that occurs during the subfertility period. We aimed to determine whether the blockade of ovarian sympathetic tone prevents the increase in KISS1 expression during reproductive aging and improves follicular development. We performed 2 experiments in rats: (1) an in vivo blockade of beta-adrenergic receptor with propranolol (5.0 mg/kg) and (2) an ovarian surgical denervation to modulate the sympathetic system at these ages. We measured Kisspeptin and follicle-stimulating hormone receptor (FSHR) mRNA and protein levels by qRT-PCR and western blot and counted primordial, primary and secondary follicles at 8, 10 and 12 months of age. The results showed that ovarian KISS1 decreased but FSHR increased after both propranolol administration and the surgical denervation in rats of 8, 10 and 12 months of age. An increase in FSHR was related to an increase in the number of smaller secondary follicles and a decreased number of primordial follicles at 8, 10 and 12 months of age. These results suggest that intraovarian KISS1 is regulated by sympathetic nerves via a beta-adrenergic receptor and participates locally in ovarian follicular development in reproductive aging.


2021 ◽  
Vol 9 (7) ◽  
pp. e002383
Author(s):  
Jin-Li Wei ◽  
Si-Yu Wu ◽  
Yun-Song Yang ◽  
Yi Xiao ◽  
Xi Jin ◽  
...  

PurposeRegulatory T cells (Tregs) heavily infiltrate triple-negative breast cancer (TNBC), and their accumulation is affected by the metabolic reprogramming in cancer cells. In the present study, we sought to identify cancer cell-intrinsic metabolic modulators correlating with Tregs infiltration in TNBC.Experimental designUsing the RNA-sequencing data from our institute (n=360) and the Molecular Taxonomy of Breast Cancer International Consortium TNBC cohort (n=320), we calculated the abundance of Tregs in each sample and evaluated the correlation between gene expression levels and Tregs infiltration. Then, in vivo and in vitro experiments were performed to verify the correlation and explore the underlying mechanism.ResultsWe revealed that GTP cyclohydrolase 1 (GCH1) expression was positively correlated with Tregs infiltration and high GCH1 expression was associated with reduced overall survival in TNBC. In vivo and in vitro experiments showed that GCH1 increased Tregs infiltration, decreased apoptosis, and elevated the programmed cell death-1 (PD-1)-positive fraction. Metabolomics analysis indicated that GCH1 overexpression reprogrammed tryptophan metabolism, resulting in L-5-hydroxytryptophan (5-HTP) accumulation in the cytoplasm accompanied by kynurenine accumulation and tryptophan reduction in the supernatant. Subsequently, aryl hydrocarbon receptor, activated by 5-HTP, bound to the promoter of indoleamine 2,3-dioxygenase 1 (IDO1) and thus enhanced the transcription of IDO1. Furthermore, the inhibition of GCH1 by 2,4-diamino-6-hydroxypyrimidine (DAHP) decreased IDO1 expression, attenuated tumor growth, and enhanced the tumor response to PD-1 blockade immunotherapy.ConclusionsTumor-cell-intrinsic GCH1 induced immunosuppression through metabolic reprogramming and IDO1 upregulation in TNBC. Inhibition of GCH1 by DAHP serves as a potential immunometabolic strategy in TNBC.


Processes ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 1294
Author(s):  
Samuel Álvarez-Almazán ◽  
Gabriel Navarrete-Vázquez ◽  
Itzia Irene Padilla-Martínez ◽  
José Correa-Basurto ◽  
Diana Alemán-González-Duhart ◽  
...  

By activating PPAR-γ, thiazolidinediones normalize glucose levels in animal models of type 2 diabetes and in patients with this pathology. The aim of the present study was to analyze 219 new derivatives in silico and select the best for synthesis, to be evaluated for acute oral toxicity in female rats and for control of diabetes-related parameters in a rat model of streptozotocin-induced diabetes. The best compound was chosen based on pharmacokinetic, pharmacodynamic, and toxicological parameters obtained in silico and binding orientation observed by docking simulations on PPAR-γ. Compound 1G was synthesized by a quick and easy Knoevenagel condensation. Acute oral toxicity was found at a dose greater than 2000 mg/Kg. Compound 1G apparently produces therapeutic effects similar to those of pioglitazone, decreasing glycaemia and triglyceride levels in diabetic animals, without liver damage. Moreover, it did not cause a significant weight gain and tended to reduce polydipsia and polyphagia, while diminishing systemic inflammation related to TNF-α and IL-6. It lowered the level of endogenous antioxidant molecules such as reduced glutathione and glutathione reductase. In conclusion, 1G may be a candidate for further testing as an euglycemic agent capable of preventing the complications of diabetes.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Zhen Li ◽  
Sumin Gu ◽  
Yumeng Quan ◽  
Kulandaiappan Varadaraj ◽  
Jean X. Jiang

AbstractCongenital cataracts are associated with gene mutations, yet the underlying mechanism remains largely unknown. Here we reported an embryonic chick lens model that closely recapitulates the process of cataract formation. We adopted dominant-negative site mutations that cause congenital cataracts, connexin, Cx50E48K, aquaporin 0, AQP0R33C, αA-crystallin, CRYAA R12C and R54C. The recombinant retroviruses containing these mutants were microinjected into the occlusive lumen of chick lenses at early embryonic development. Cx50E48K expression developed cataracts associated with disorganized nuclei and enlarged extracellular spaces. Expression of AQP0R33C resulted in cortical cataracts, enlarged extracellular spaces and distorted fiber cell organization. αA crystallin mutations distorted lens light transmission and increased crystalline protein aggregation. Together, retroviral expression of congenital mutant genes in embryonic chick lenses closely mimics characteristics of human congenital cataracts. This model will provide an effective, reliable in vivo system to investigate the development and underlying mechanism of cataracts and other genetic diseases.


Author(s):  
Yong Fu ◽  
Gailing Ma ◽  
Yuqian Zhang ◽  
Wenli Wang ◽  
Tongguo Shi ◽  
...  

Abstract Background Interleukin-10 (IL-10) is a potent immunoregulatory cytokine that plays a pivotal role in maintaining mucosal immune homeostasis. As a novel synthetic inhibitor of salt-inducible kinases (SIKs), HG-9-91-01 can effectively enhance IL-10 secretion at the cellular level, but its in vivo immunoregulatory effects remain unclear. In this study, we investigated the effects and underlying mechanism of HG-9-91-01 in murine colitis models. Methods The anti-inflammatory effects of HG-9-91-01 were evaluated on 2, 4, 6-trinitrobenzene sulfonic acid (TNBS)-, dextran sulfate sodium–induced colitis mice, and IL-10 knockout chronic colitis mice. The in vivo effector cell of HG-9-91-01 was identified by fluorescence-activated cell sorting and quantitative real-time polymerase chain reaction. The underlying mechanism of HG-9-91-01 was investigated via overexpressing SIKs in ANA-1 macrophages and TNBS colitis mice. Results Treatment with HG-9-91-01 showed favorable anticolitis effects in both TNBS- and DSS-treated mice through significantly promoting IL-10 expression in colonic macrophages but failed to protect against IL-10 KO murine colitis. Further study indicated that HG-9-91-01 markedly enhanced the nuclear level of cAMP response element-binding protein (CREB)-regulated transcription coactivator 3 (CRTC3), whereas treatment with lentiviruses encoding SIK protein markedly decreased the nuclear CRTC3 level in HG-9-91-01–treated ANA-1 macrophages. In addition, intracolonic administration with lentiviruses encoding SIK protein significantly decreased the nuclear CRTC3 level in the lamina propria mononuclear cells and ended the anti-inflammatory activities of HG-9-91-01. Conclusions We found that HG-9-91-01 promoted the IL-10 expression of colonic macrophages and exhibited its anticolitis activity through the SIK/CRTC3 axis, and thus it may represent a promising strategy for inflammatory bowel disease therapy.


Author(s):  
Weiqiang Huang ◽  
Longshan Zhang ◽  
Mi Yang ◽  
Xixi Wu ◽  
Xiaoqing Wang ◽  
...  

Abstract Background Irradiation has emerged as a valid tool for nasopharyngeal carcinoma (NPC) in situ treatment; however, NPC derived from tissues treated with irradiation is a main cause cancer-related death. The purpose of this study is to uncover the underlying mechanism regarding tumor growth after irradiation and provided potential therapeutic strategy. Methods Fibroblasts were extracted from fresh NPC tissue and normal nasopharyngeal mucosa. Immunohistochemistry was conducted to measure the expression of α-SMA and FAP. Cytokines were detected by protein array chip and identified by real-time PCR. CCK-8 assay was used to detect cell proliferation. Radiation-resistant (IRR) 5-8F cell line was established and colony assay was performed to evaluate tumor cell growth after irradiation. Signaling pathways were acquired via gene set enrichment analysis (GSEA). Comet assay and γ-H2AX foci assay were used to measure DNA damage level. Protein expression was detected by western blot assay. In vivo experiment was performed subcutaneously. Results We found that radiation-resistant NPC tissues were constantly infiltrated with a greater number of cancer-associated fibroblasts (CAFs) compared to radiosensitive NPC tissues. Further research revealed that CAFs induced the formation of radioresistance and promoted NPC cell survival following irradiation via the IL-8/NF-κB pathway to reduce irradiation-induced DNA damage. Treatment with Tranilast, a CAF inhibitor, restricted the survival of CAF-induced NPC cells and attenuated the of radioresistance properties. Conclusions Together, these data demonstrate that CAFs can promote the survival of irradiated NPC cells via the NF-κB pathway and induce radioresistance that can be interrupted by Tranilast, suggesting the potential value of Tranilast in sensitizing NPC cells to irradiation.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1160
Author(s):  
Adrien Chastel ◽  
Delphine Vimont ◽  
Stephane Claverol ◽  
Marion Zerna ◽  
Sacha Bodin ◽  
...  

Background: [68Ga]Ga-RM2 is a potent Gastrin-Releasing Peptide-receptor (GRP-R) antagonist for imaging prostate cancer and breast cancer, currently under clinical evaluation in several specialized centers around the world. Targeted radionuclide therapy of GRP-R-expressing tumors is also being investigated. We here report the characteristics of a kit-based formulation of RM2 that should ease the development of GRP-R imaging and make it available to more institutions and patients. Methods: Stability of the investigated kits over one year was determined using LC/MS/MS and UV-HPLC. Direct 68Ga-radiolabeling was optimized with respect to buffer (pH), temperature, reaction time and shaking time. Conventionally prepared [68Ga]Ga-RM2 using an automated synthesizer was used as a comparator. Finally, the [68Ga]Ga-RM2 product was assessed with regards to hydrophilicity, affinity, internalization, membrane bound fraction, calcium mobilization assay and efflux, which is a valuable addition to the in vivo literature. Results: The kit-based formulation, kept between 2 °C and 8 °C, was stable for over one year. Using acetate buffer pH 3.0 in 2.5–5.1 mL total volume, heating at 100 °C during 10 min and cooling down for 5 min, the [68Ga]Ga-RM2 produced by kit complies with the requirements of the European Pharmacopoeia. Compared with the module production route, the [68Ga]Ga-RM2 produced by kit was faster, displayed higher yields, higher volumetric activity and was devoid of ethanol. In in vitro evaluations, the [68Ga]Ga-RM2 displayed sub-nanomolar affinity (Kd = 0.25 ± 0.19 nM), receptor specific and time dependent membrane-bound fraction of 42.0 ± 5.1% at 60 min and GRP-R mediated internalization of 24.4 ± 4.3% at 30 min. The [natGa]Ga-RM2 was ineffective in stimulating intracellular calcium mobilization. Finally, the efflux of the internalized activity was 64.3 ± 6.5% at 5 min. Conclusion: The kit-based formulation of RM2 is suitable to disseminate GRP-R imaging and therapy to distant hospitals without complex radiochemistry equipment.


Sign in / Sign up

Export Citation Format

Share Document