scholarly journals Serum supplementation during bovine embryo culture affects their development and proliferation through macroautophagy and endoplasmic reticulum stress regulation

PLoS ONE ◽  
2021 ◽  
Vol 16 (12) ◽  
pp. e0260123
Author(s):  
Edgar Joel Soto-Moreno ◽  
Ahmed Balboula ◽  
Christine Spinka ◽  
Rocío Melissa Rivera

Serum supplementation during bovine embryo culture has been demonstrated to promote cell proliferation and preimplantation embryo development. However, these desirable outcomes, have been associated with gene expression alterations of pathways involved in macroautophagy, growth, and development at the blastocyst stage, as well as with developmental anomalies such as fetal overgrowth and placental malformations. In order to start dissecting the molecular pathways by which serum supplementation of the culture medium during the preimplantation stage promotes developmental abnormalities, we examined blastocyst morphometry, inner cell mass and trophectoderm cell allocations, macroautophagy, and endoplasmic reticulum stress. On day 5 post-insemination, > 16 cells embryos were selected and cultured in medium containing 10% serum or left as controls. Embryo diameter, inner cell mass and trophectoderm cell number, and macroautophagy were measured on day 8 blastocysts (BL) and expanded blastocysts (XBL). On day 5 and day 8, we assessed transcript level of the ER stress markers HSPA5, ATF4, MTHFD2, and SHMT2 as well as XBP1 splicing (a marker of the unfolded protein response). Serum increased diameter and proliferation of embryos when compared to the no-serum group. In addition, serum increased macroautophagy of BL when compared to controls, while the opposite was true for XBL. None of the genes analyzed was differentially expressed at any stage, except that serum decreased HSPA5 in day 5 > 16 cells stage embryos. XBP1 splicing was decreased in BL when compared to XBL, but only in the serum group. Our data suggest that serum rescues delayed embryos by alleviating endoplasmic reticulum stress and promotes development of advanced embryos by decreasing macroautophagy.

2019 ◽  
Vol 97 (12) ◽  
pp. 4946-4950 ◽  
Author(s):  
Lydia K Wooldridge ◽  
Madison E Nardi ◽  
Alan D Ealy

Abstract Deficiencies in current embryo culture media likely contribute to the poor blastocyst development rates and pregnancy retention rates for in vitro produced (IVP) bovine embryos. Of special concern is the lack of micronutrients in these media formulations. One micronutrient of interest is zinc, an essential trace element involved with various enzyme and transcription factor activities. The objective of this work was to describe whether zinc sulfate supplementation during in vitro embryo culture affects bovine embryo development and blastomere numbers. Either 0, 2, 20, or 40 µM zinc sulfate was supplemented to presumptive zygotes cultured in synthetic oviductal fluid containing AAs and bovine serum albumin for 8 d. None of the treatments affected cleavage rates. Percentage of blastocysts on days 7 and 8 postfertilization was not affected by supplementing 2 or 20 µM zinc but were reduced (P < 0.05) with 40 µM zinc. In blastocysts harvested on day 8, inner cell mass (ICM) and total cell number were increased (P < 0.05) with 2 µM zinc supplementation but not with the other zinc concentrations. Numbers of trophectoderm cells were not affected by zinc treatment. In conclusion, supplementing zinc during bovine embryo culture did not impact blastocyst development but improved ICM cell numbers. This improvement in ICM cell number may have implications for improved pregnancy retention rates after IVP embryo transfer as smaller ICM sizes are associated with poor pregnancy success in cattle.


Cells ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 2232 ◽  
Author(s):  
Claudia Springer ◽  
Valeri Zakhartchenko ◽  
Eckhard Wolf ◽  
Kilian Simmet

The role of the pluripotency factor NANOG during the second embryonic lineage differentiation has been studied extensively in mouse, although species-specific differences exist. To elucidate the role of NANOG in an alternative model organism, we knocked out NANOG in fibroblast cells and produced bovine NANOG-knockout (KO) embryos via somatic cell nuclear transfer (SCNT). At day 8, NANOG-KO blastocysts showed a decreased total cell number when compared to controls from SCNT (NT Ctrl). The pluripotency factors OCT4 and SOX2 as well as the hypoblast (HB) marker GATA6 were co-expressed in all cells of the inner cell mass (ICM) and, in contrast to mouse Nanog-KO, expression of the late HB marker SOX17 was still present. We blocked the MEK-pathway with a MEK 1/2 inhibitor, and control embryos showed an increase in NANOG positive cells, but SOX17 expressing HB precursor cells were still present. NANOG-KO together with MEK-inhibition was lethal before blastocyst stage, similarly to findings in mouse. Supplementation of exogenous FGF4 to NANOG-KO embryos did not change SOX17 expression in the ICM, unlike mouse Nanog-KO embryos, where missing SOX17 expression was completely rescued by FGF4. We conclude that NANOG mediated FGF/MEK signaling is not required for HB formation in the bovine embryo and that another—so far unknown—pathway regulates HB differentiation.


2017 ◽  
Vol 29 (1) ◽  
pp. 173
Author(s):  
M. S. Ortega ◽  
P. J. Hansen

A single nucleotide polymorphism (SNP) in WBP1 has been previously associated with embryonic development to the blastocyst stage. WBP1 interacts with WW domain containing proteins including YAP1 from the hippo signalling pathway that is involved in trophectoderm (TE) formation. Here we tested whether reduction in mRNA abundance for WBP1 would reduce development to the blastocyst stage and formation of cells in the inner cell mass (ICM) and TE. Knockdown was performed using a GapmeR LNATM antisense oligonucleotide designed to target WBP1. A scrambled version of the same sequence was used as a control. Embryos were produced in vitro from slaughterhouse oocytes and bulls from Bos taurus and Bos indicus breeds. At 20 to 22 h after insemination (hpi), embryos were treated with 5 µM anti-WBP1 GapmeR (KD), 5 µM scrambled GapmeR (SC), or vehicle (CTL). At 72 to 75 hpi (the time of maximal WBP1 expression), groups of 18 to 20 embryos were collected from each treatment to evaluate WBP1 expression. Other cultured embryos (minimum of 50/treatment for each replicate) were cultured until Day 8 after insemination. Cleavage was assessed at Day 3 and blastocyst formation at Day 7 and 8. Embryos were collected at Day 8 to determine ICM and TE cell number by determining nuclear immunoreactive CDX2. All experiments were replicated 5 times. Fold change was calculated relative to the CTL group. Data were analysed by analysis of variance for gene expression and cell number, and through logistic regression for embryonic development. WBP1 expression was reduced (P = 0.04) in KD embryos compared to CTL (least squares means ± SEM: 1 ± 0.19 v. 0.64 ± 0.19 fold change) or SC (1.05 ± 0.19). There was no difference in expression between CTL and SC. Percent of embryos that cleaved was not affected by treatment (P > 0.05); however, percent of inseminated oocytes that became blastocysts tended to be lower in KD compared to CTL and SC at Day 7 (P = 0.09) [10.8 ± 2.8, 20 ± 3.0, and 16.3 ± 3.1% for KD, CTL, and SC, respectively] and 8 after insemination (P = 0.06) [13.7 ± 3.3, 24.2 ± 3.3, and 22.9 ± 3.6%]. Knockdown of WBP1 caused a reduction in number of total (P = 0.0004) and TE (P < 0.0001) cells with no effect on ICM cell number (P = 0.83). Total cell numbers for KD, SC, and CTL were 124.2 ± 6.4, 157.75 ± 7.4, and 124.28 ± 6.4 and numbers of TE cells were 59.7 ± 3.8, 90.0 ± 4.47, and 90.0 ± 4.4. Results show that reduction in mRNA for WBP1 decreases TE formation and tends to reduce competence of embryos to become blastocysts. This study was supported by USDA AFRI 2013–68004–20365.


2021 ◽  
Vol 33 (2) ◽  
pp. 142
Author(s):  
J. Ispada ◽  
C. B. de Lima ◽  
E. C. dos Santos ◽  
A. M. da Fonseca Junior ◽  
J. V. Alcantara da Silva ◽  
...  

DNA methylation/demethylation is one of several epigenetic mechanisms by which metabolism regulates gene expression. More specifically, α-ketoglutarate (αKG) and succinate (Suc) are tricarboxylic acid cycle metabolites that may decrease and increase, respectively, the activity of DNA demethylases. Because pre-implantation embryos undergo reprogramming in both DNA methylation and metabolic pathways, it is possible that metabolic changes influence this epigenetic mark. To test that hypothesis, bovine embryos were invitro produced by using standard protocols and, 8h after fertilization, zygotes were transferred to synthetic oviductal fluid (SOF)-based culture medium (control, CO) or culture medium containing 4mM dimethyl-αKG, or 4mM dimethyl-Suc, where they remained until Day 4. Embryos were collected at Day 4 or remained in culture until Day 7, in control medium. Day 4 embryos were evaluated for DNA methylation levels by immunofluorescence detection of 5-methylcytosine (5mC) and cleavage rate. Day 7 embryos were also assessed for DNA methylation by immunofluorescence of 5mC, total cell number, blastocyst rates, and quantification of ACTB (housekeeping), DNMT1, DNMT3A, and DNMT3B transcript by RT-qPCR in trophectoderm (TE) and inner cell mass (ICM) separated by immunosurgery. The mRNA expression levels of were normalized to internal control ACTB and subsequently calculated using the 2−ΔΔCT method, using the control group for comparisons. All data were submitted to outlier detection using ROUT with Q=1% followed by one-way analysis of variance (ANOVA) and Fisher’s least significant difference (l.s.d.) test in GraphPad Prism. αKG and Suc did not influence cleavage or blastocyst rates, total cell number, or cell allocation. αKG supplementation reduced 5mC fluorescence intensity in embryos assessed at Day 4 (CO: 12.8±0.4 AU; αKG: 9.0±0.2AU; P&lt;0.0001) and Day 7 (CO: 36.5±0.7 AU; αKG: 23.5±0.4 AU; P&lt;0.0001), whereas Suc incubation increased DNA methylation levels in embryos at Day 4 (CO: 12.8±0.4 AU; Suc: 15.7±0.3 AU; P&lt;0.0001) and Day 7 (CO: 36.5±0.7 AU; Suc: 70.5±0.5 AU; P&lt;0.0001). αKG increased expression of DNMT1 (P=0.0438) in the ICM and led to lower levels of DNMT1 (P&lt;0.0001), DNMT3A (P=0.0013), and DNMT3B (P=0.0015) in TE cells. The culture with Suc increased DNMT1 (P=0.0074), DNMT3A (P=0.0186), and DNMT3B (P=0.0286) in ICM. Regarding TE, Suc resulted in lower expression of DNMT1 (P&lt;0.0001), DNMT3A (P=0.0017), and DNMT3B (P=0.0052). In conclusion, both supplementations resulted in global DNA methylation changes without affecting embryo development rates or morphology. These changes were accompanied by alterations in transcript profiles between ICM and TE, with differences among treatments being more pronounced in transcripts from ICM. This is the first report of DNA demethylation–induced changes by analogues of TCA cycle metabolites during early reprogramming of the bovine embryo with prolonged effects in TE and ICM cells. This research was funded by FAPESP: 2017/18384-0; 2018/11668-6.


2019 ◽  
Vol 31 (1) ◽  
pp. 156
Author(s):  
R. Pasquariello ◽  
Y. Yuan ◽  
D. Logsdon ◽  
J. Becker ◽  
L. Yao ◽  
...  

We have demonstrated that bovine blastocyst development was improved after culture in medium with only 6.25% of standard carbohydrate and amino acid concentrations, supplemented with fatty acids. However, these blastocysts had lower cell numbers. We hypothesised that this was due to deficiencies in embryo metabolism at the time of blastocyst formation. Thus, our objectives were to (1) determine whether using a sequential combination of nutrient concentrations could rescue blastocyst cell number; and (2) investigate the efficacy of reduced nutrient medium in 2 sources of oocytes. Oocytes were in vitro matured in identical medium either in our laboratory or during shipment from a commercial supplier. Oocytes in our laboratory were derived from feedlot heifers while purchased oocytes were obtained from culled cows. Zygotes were cultured using sequential medium with fraction V BSA. In step 1/step 2, embryos were cultured using 100% (glucose 0.5 mM/fructose 3.0mM, pyruvate 0.3/0.1mM, lactate 10.0/6.0mM, NEEA 1×/1× MEM, EAA 0.25×/0.5× MEM), 25% or 6.25% of standard nutrient concentrations. On Day 3, embryos were moved to step 2 as follows: 100% to 100%, 25% to 25%, 25% to 100%, 6.25% to 25%, or 6.25% to 100%. Lipid content of single mature oocytes from both sources was determined using gas chromatography coupled to an ISQ-LT MS/MS (GC-MS; Thermo Scientific, Waltham, MA, USA). Data (mean±s.e.m.) were analysed using ANOVA (P&lt;0.05). When oocytes from feedlot heifers were used, blastocyst development and cell number did not differ between treatments. When oocytes from culled cows were used, blastocyst development was improved after embryo culture in 25-25% (45.1±3.3%) and 6.25-25% (46.6±3.2%) compared with 100-100% (34.2±3.2%). However, inner cell mass number of blastocysts cultured in 25-25% (25.6±2.5) and 6.25-25% (26.0±2.6) was reduced compared with 100-100% (41.4±4.5); TE and total cell number did not differ. Embryos cultured in 100-100%, 25-100%, and 6.25-100% were equivalent. Metabolomics revealed that 10 lipid compounds (polyunsaturated fatty acids, glycosyldiacylglycerols, and glycerophospholipids) differed in abundance between the two sources of oocytes. These results show that oocytes from different sources lead to different experimental outcomes, likely due to a combination of age, body condition, diet, and hormone treatment of the female. Oocytes from culled cows result in embryos that develop to blastocysts better in a reduced nutrient environment, although these embryos have fewer inner cell masses, suggesting that quality may be reduced. Embryos from feedlot heifer oocytes are relatively immune to nutrient fluctuations. Different endogenous fatty acid reserves in the oocyte may lead to differing metabolic strategies in the subsequent embryo, altering their response to substrate availability during in vitro culture. These results also demonstrate that reduction of nutrients during culture has no detrimental effect on blastocyst development or total cell number in either oocyte source, but that inner cell mass formation requires increased nutrient provision.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
R. Sainte-Rose ◽  
C. Petit ◽  
L. Dijols ◽  
C. Frapsauce ◽  
F. Guerif

AbstractThe aim of this study was to determine the effectiveness of extended embryo culture in advanced maternal age (AMA) patients (37–43 years). In this retrospective analysis, 21,301 normally fertilized zygotes from 4952 couples were cultured until the blastocyst stage. Blastocyst development, including kinetics and morphology, transfer rate, implantation and live birth rates, were measured. In AMA patients, the blastocyst rate was significantly decreased as compared to that in younger women. On day 5, blastocysts underwent growth retardation in AMA patients, which was highlighted by a decreased rate of full/expanded blastocysts. Organization of the cells (trophectoderm and inner cell mass) was unaffected by age. However, in AMA patients, a ‘good’ morphology blastocyst had a decreased probability to implant compared with an ‘average’ morphology blastocyst in younger women. While the rates of blastocyst transfer and useful blastocysts were similar to younger patients, in AMA patients, both implantation and live birth rates were significantly reduced. Our results support the idea that extended embryo culture is not harmful for AMA patients. However, embryo selection allowed by such culture is not powerful enough to avoid chromosomal abnormalities in the developed blastocysts and therefore cannot compensate for the effect of a woman’s age.


Development ◽  
1988 ◽  
Vol 102 (4) ◽  
pp. 793-803 ◽  
Author(s):  
V.E. Papaioannou ◽  
K.M. Ebert

Total cell number as well as differential cell numbers representing the inner cell mass (ICM) and trophectoderm were determined by a differential staining technique for preimplantation pig embryos recovered between 5 and 8 days after the onset of oestrus. Total cell number increased rapidly over this time span and significant effects were found between embryos of the same chronological age from different females. Inner cells could be detected in some but not all embryos of 12–16 cells. The proportion of inner cells was low in morulae but increased during differentiation of ICM and trophectoderm in early blastocysts. The proportion of ICM cells then decreased as blastocysts expanded and hatched. Some embryos were cultured in vitro and others were transferred to the oviducts of immature mice as a surrogate in vivo environment and assessed for morphology and cell number after several days. Although total cell number did not reach in vivo levels, morphological development and cell number increase was sustained better in the immature mice than in vitro. The proportion of ICM cells in blastocysts formed in vitro was in the normal range.


Author(s):  
Xiaosu Miao ◽  
Wei Cui

Abstract Female infertility is a heterogeneous disorder with a variety of complex causes, including inflammation and oxidative stress, which are also closely associated with the pathogenesis of Polycystic Ovary Syndrome (PCOS). As a new treatment for PCOS, berberine (BER), a natural compound from Berberis, has been clinically applied recently. However, the mechanisms underlying the association between BER and embryogenesis are still largely unknown. In this study, effects of BER on preimplantation development was evaluated by using both normal and inflammatory culture conditions induced by lipopolysaccharide (LPS) in the mouse. Our data first suggest that BER itself (25 nM) does not affect embryo quality or future developmental potency, moreover, it can effectively alleviate LPS-induced embryonic damage by mitigating apoptosis via ROS−/caspase-3-dependent pathways and by suppressing pro-inflammatory cytokines via inhibition of NF-κB signaling pathway during preimplantation embryo development. In addition, skewed cell lineage specification in inner cell mass (ICM) and primitive endoderm (PE) caused by LPS can also be successfully rescued with BER. In summary, these findings for the first time demonstrate the non-toxicity of low doses of BER and its anti-apoptotic and anti-oxidative properties on embryonic cells during mammalian preimplantation development.


2020 ◽  
Author(s):  
Iris Martínez-Rodero ◽  
Tania García-Martínez ◽  
Erika Alina Ordóñez-León ◽  
Meritxell Vendrell-Flotats ◽  
Carlos Olegario-Hidalgo ◽  
...  

Abstract Background VitTrans is a device that enables the vitrification and warming/dilution of in vitro produced bovine embryos followed by their direct transfer to recipient females in field conditions. This study sought to improve the VitTrans method by comparing two equilibration times: short (SE: 3 min) and long (LE: 12 min). Outcome measures recorded in vitrified D7 and D8 expanded blastocysts were survival and hatching rates, differential cell counts, apoptosis rate and gene expression. Results While survival rates at 3 h and 24 h post-warming were reduced (P < 0.05) after vitrification, hatching rates of D7 embryos vitrified after SE were similar to those obtained in fresh non-vitrified blastocysts. Hatching rates of vitrified D8 blastocysts were lower (P < 0.05) than of fresh controls, regardless of treatment. Total cell counts, and inner cell mass and trophectoderm cell numbers were similar in hatched blastocysts derived from D7 blastocysts vitrified after SE and fresh blastocysts, while vitrified D8 blastocysts yielded lower values, regardless of treatment. The rate of apoptotic cells was significantly higher in both treatment groups when compared to fresh controls, although apoptosis rates were lower using the SE than LE protocol. No differences emerged in expression of the genes BAX, AQP3, CX43 and IFNτ between blastocysts vitrified after SE or LE, whereas a significantly higher abundance of BCL2L1 and SOD1 transcripts was observed in blastocysts vitrified after SE compared to LE. Conclusions The VitTrans device combined with a shorter exposure to the equilibration medium improves vitrification/warming outcomes facilitating the direct transfer of vitrified embryos under field conditions.


Sign in / Sign up

Export Citation Format

Share Document