lava effusion
Recently Published Documents


TOTAL DOCUMENTS

27
(FIVE YEARS 11)

H-INDEX

10
(FIVE YEARS 1)

2021 ◽  
Vol 9 ◽  
Author(s):  
Fukashi Maeno ◽  
Atsushi Yasuda ◽  
Natsumi Hokanishi ◽  
Takayuki Kaneko ◽  
Yoshihiko Tamura ◽  
...  

The island-forming Nishinoshima eruptions in the Ogasawara Islands, Japan, provide a rare opportunity to examine how the terrestrial part of Earth’s surface increases via volcanism. Here, the sequence of recent eruptive activity of Nishinoshima is described based on long-term geological and geochemical monitoring of eruptive products. Processes of island growth and temporal changes in the magma chemistry are discussed. The growth of Nishinoshima was sustained by the effusion of low-viscosity andesite lava flows since 2013. The lava flows spread radially with numerous branches, resulting in compound lava flows. Lava flows form the coherent base of the new volcanic edifice; however, pyroclastic eruptions further developed the subaerial volcanic edifice. The duration of three consecutive eruptive episodes decreased from 2 years to a week through the entire eruptive sequence, with a decreasing eruptive volume and discharge rate through time. However, the latest, fourth episode was the most intense and largest, with a magma discharge rate on the order of 106 m3/day. The temporal change in the chemical composition of the magma indicates that more mafic magma was involved in the later episodes. The initial andesite magma with ∼60 wt% SiO2 changed to basaltic andesite magma with ∼55 wt% SiO2, including olivine phenocryst, during the last episode. The eruptive behavior and geochemical characteristics suggest that the 2013–2020 Nishinoshima eruption was fueled by magma resulting from the mixing of silicic and mafic components in a shallow reservoir and by magma episodically supplied from deeper reservoirs. The lava effusion and the occasional explosive eruptions, sustained by the discharge of magma caused by the interactions of these multiple magma reservoirs at different depths, contributed to the formation and growth of the new Nishinoshima volcanic island since 2013. Comparisons with several examples of island-forming eruptions in shallow seas indicate that a long-lasting voluminous lava effusion with a discharge rate on the order of at least 104 m3/day (annual average) to 105 m3/day (monthly average) is required for the formation and growth of a new volcanic island with a diameter on km-scale that can survive sea-wave erosion over the years.


2021 ◽  
Author(s):  
◽  
Jack Whattam

<p>The ascent, eruption, and deposition of volcanic pyroclasts is complex, but the resultant rocks have distinctive textural markers that indicate the unseen processes that were operating during a given eruption. These textures can be used to build a picture of the sequence of events and the eruptive environment. Vulcanian eruptions, short-lived, intermittent blasts interpreted as the clearing of a conduit plug, produce ballistic pyroclasts with textures that are directly correlated with the makeup of the plug material. A late phase of the recent eruption of Puyehue-Cordón Caulle (2011-2012, Southern Chile) produced a striking array of, colourful, and texturally diverse Vulcanian bombs. The eruption began on June 4th 2011 with Plinian to Sub-Plinian activity, transitioning to a phase of obsidian lava effusion on June 15th, and then to a hybrid effusive-explosive phase (vulcanian bomb ejection coeval with an effusive obsidian lava flow) in January 2012. Transitions from explosive to effusive activity are often described as singular, definitive, one-way events, at odds with the hybrid effusive-explosive activity seen at Puyehue-Cordón Caulle. Textures in these bombs indicate that the constituent melts have experienced several (possibly countless) episodes of fragmentation, sintering, densification, shearing, and vesiculation within a conduit-scale breccia pack, conceptually equivalent to a conduit-scale tuffisite vein. In all examined bombs, centimetre to micron scale clasts of basaltic-andesite (~SiO2 54-55 wt%) are found, with textures that indicate a magmatic origin. Although volumetrically minor, co-mingling of a hotter, mafic magmatic component has implications for the anomalously hot rhyolite, as well as the onset and longevity of the hybrid eruption phase. Textural and geochemical characteristics of bombs elucidate complex processes in the shallow conduit and vent, advancing the understanding of tuffisite veins and Vulcanian eruption dynamics, which are far from straightforward.</p>


2021 ◽  
Author(s):  
◽  
Jack Whattam

<p>The ascent, eruption, and deposition of volcanic pyroclasts is complex, but the resultant rocks have distinctive textural markers that indicate the unseen processes that were operating during a given eruption. These textures can be used to build a picture of the sequence of events and the eruptive environment. Vulcanian eruptions, short-lived, intermittent blasts interpreted as the clearing of a conduit plug, produce ballistic pyroclasts with textures that are directly correlated with the makeup of the plug material. A late phase of the recent eruption of Puyehue-Cordón Caulle (2011-2012, Southern Chile) produced a striking array of, colourful, and texturally diverse Vulcanian bombs. The eruption began on June 4th 2011 with Plinian to Sub-Plinian activity, transitioning to a phase of obsidian lava effusion on June 15th, and then to a hybrid effusive-explosive phase (vulcanian bomb ejection coeval with an effusive obsidian lava flow) in January 2012. Transitions from explosive to effusive activity are often described as singular, definitive, one-way events, at odds with the hybrid effusive-explosive activity seen at Puyehue-Cordón Caulle. Textures in these bombs indicate that the constituent melts have experienced several (possibly countless) episodes of fragmentation, sintering, densification, shearing, and vesiculation within a conduit-scale breccia pack, conceptually equivalent to a conduit-scale tuffisite vein. In all examined bombs, centimetre to micron scale clasts of basaltic-andesite (~SiO2 54-55 wt%) are found, with textures that indicate a magmatic origin. Although volumetrically minor, co-mingling of a hotter, mafic magmatic component has implications for the anomalously hot rhyolite, as well as the onset and longevity of the hybrid eruption phase. Textural and geochemical characteristics of bombs elucidate complex processes in the shallow conduit and vent, advancing the understanding of tuffisite veins and Vulcanian eruption dynamics, which are far from straightforward.</p>


2021 ◽  
Vol 83 (5) ◽  
Author(s):  
Keiko Matsumoto ◽  
Nobuo Geshi

AbstractThe occurrence of groundmass crystals reveals the shallow conduit process of magmas, which affects the behavior of eruptions. Here, we analyzed groundmass microtextures of ash samples from the 2018 eruption of Shinmoedake volcano, Japan, to evaluate the change of magma ascent conditions during the eruption sequence. The eruptive activity changed from ash venting (Phase 1: March 1–6) to lava effusion with continuous ash-laden plumes (Phase 2: March 6–9) and then shifted to Vulcanian explosions (Phase 3: March 10–April 5). Non-juvenile particles were abundant in Phase 1, whereas juvenile particles were dominant in Phases 2 and 3. Vesicular juvenile particles were more abundant in Phase 2 than Phase 3. The lower microlite crystallinity and groundmass SiO2 concentrations of the vesicular particles indicate that they were sourced from magma that ascended rapidly. Abundant nanolites were observed in the black interstitial glass of juvenile particles under an optical microscope, whereas few nanolites were observed in the transparent ones. The presence of nanolites can be explained by the dehydration of silicate melt, as well as cooling and oxidation between fragmentation and quenching. Temporal changes in the ash componentry show that the eruption activity started from the erosion of the pre-existing vent plug (Phase 1), shifted to the simultaneous eruption of bubble-bearing and outgassed magmas (Phase 2), and concluded with explosions of the stagnant lava (Phase 3), thereby demonstrating the sequence of vent opening and extrusion and stagnation of magma. Therefore, ash microtextures are valuable for monitoring the shallow conduit process of eruptive magma.


2021 ◽  
Vol 83 (4) ◽  
Author(s):  
Hannah R. Dietterich ◽  
Angela K. Diefenbach ◽  
S. Adam Soule ◽  
Michael H. Zoeller ◽  
Matthew P. Patrick ◽  
...  

2021 ◽  
Author(s):  
Christoph Kern ◽  
Patricia Nadeau ◽  
Tamar Elias ◽  
Peter Kelly ◽  
Allan Lerner ◽  
...  

&lt;p&gt;K&amp;#299;lauea Volcano (Hawaii, USA) had been in a state of quiescence since the end of the historic 2018 eruption on its lower East Rift Zone. Tapping the volcanic plumbing system at elevations around 300 m well below the volcano&amp;#8217;s 1200 m summit, the 2018 eruption drained magma from the volcano&amp;#8217;s summit reservoir and East Rift Zone, causing the drainage of a decade-old subaerial lava lake followed by widespread caldera collapse. Two years later, on the evening of 20 December 2020, the Hawaiian Volcano Observatory (HVO) once again detected a glow within the now vastly deepened Halema&amp;#699;uma&amp;#699;u Crater at K&amp;#299;lauea&amp;#8217;s summit. A new eruption had begun. Observations over the next few days revealed lava flowing from three vents in the wall of the crater and into its base. A water lake, which had formed in 2019 &amp;#8211; 2020 from groundwater infiltration, boiled off within hours and the crater began rapidly filling with lava. Over the first 3 days of the eruption, the new lava lake filled the lowermost ~150 m of the summit crater, and sulfur dioxide (SO&lt;sub&gt;2&lt;/sub&gt;) emission rates sometimes exceeded 30,000 metric tons per day (t/d) as measured by Differential Optical Absorption Spectroscopy (DOAS) traverses recorded both from the ground and by helicopter. These vigorous SO&lt;sub&gt;2&lt;/sub&gt; emissions were also clearly detected by the Tropospheric Monitoring Instrument (TROPOMI) aboard the Sentinal-5 Precursor satellite, and comparisons of the ground-based data with those collected by TROPOMI are the topic of ongoing research. Lava effusion and gas emission rates then tailed off and, from 26 December to 2 January, DOAS measurements indicated SO&lt;sub&gt;2&lt;/sub&gt; emissions of ~5,000 t/d, similar to the average emission rate from K&amp;#299;lauea&amp;#8217;s summit lava lake throughout most of the volcano&amp;#8217;s 2008-2018 eruption. Data from a continuous Multiple Gas Analyzer System (MultiGAS) installed approximately 1.3 km downwind of the active vents indicate that the carbon dioxide (CO&lt;sub&gt;2&lt;/sub&gt;) to SO&lt;sub&gt;2&lt;/sub&gt; molar ratio of the emitted gas is low (0.3 &amp;#177; 0.1), consistent with a model in which the erupted lava has been previously degassed in carbon dioxide but is only now degassing the more soluble sulfur as it reaches the surface. Further MultiGAS measurements performed with an unoccupied aircraft system (UAS) show that the gas composition varies throughout the emitted plume, but that the primary constituents are water vapor (~80-90% molar), carbon dioxide (~3%), and sulfur dioxide (~7-16%), while hydrogen sulfide is below the detection limit of the instrumentation. As of 11 January 2021, lava effusion and gas emissions appear to be slowly decreasing in vigor, but it is as yet unclear whether the eruption will continue to weaken and end within the coming weeks, or whether K&amp;#299;lauea Volcano will once again harbor a sustained subaerial lava lake for months or years to come.&lt;/p&gt;


2021 ◽  
Vol 73 (1) ◽  
Author(s):  
Takayuki Kaneko ◽  
Atsushi Yasuda ◽  
Toshitsugu Fujii

AbstractThe effusion rate of lava is one of the most important eruption parameters, as it is closely related to the migration process of magma underground and on the surface, such as changes in lava flow direction or formation of new effusing vents. Establishment of a continuous and rapid estimation method has been an issue in volcano research as well as disaster prevention planning. For effusive eruptions of low-viscosity lava, we examined the relationship between the nighttime spectral radiance in the 1.6-µm band of the Himawari-8 satellite (R1.6Mx: the pixel value showing the maximum radiance in the heat source area) and the effusion rate using data from the 2017 Nishinoshima activity. Our analysis confirmed that there was a high positive correlation between these two parameters. Based on the linear-regression equation obtained here (Y = 0.47X, where Y is an effusion rate of 106 m3 day−1 and X is an R1.6Mx of 106 W m−2 sr−1 m−1), we can estimate the lava-effusion rate from the observation data of Himawari-8 via a simple calculation. Data from the 2015 Raung activity—an effusive eruption of low-viscosity lava—were arranged along the extension of this regression line, which suggests that the relationship is applicable up to a level of ~ 2 × 106 m3 day−1. We applied this method to the December 2019 Nishinoshima activity and obtained an effusion rate of 0.50 × 106 m3 day−1 for the initial stage. We also calculated the effusion rate for the same period based on a topographic method, and verified that the obtained value, 0.48 × 106 m3 day−1, agreed with the estimation using the Himawari-8 data. Further, for Nishinoshima, we simulated the extent of hazard areas from the initial lava flow and compared cases using the effusion rate obtained here and the value corresponding to the average effusion rate for the 2013–2015 eruptions. The former distribution was close to the actual distribution, while the latter was much smaller. By combining this effusion-rate estimation method with real-time observations by Himawari-8 and lava-flow simulation software, we can build a rapid and precise prediction system for volcano hazard areas.


2020 ◽  
Vol 8 ◽  
Author(s):  
Arran P. Murch ◽  
James D. L. White ◽  
Thibaut Barreyre ◽  
Rebecca J. Carey ◽  
Rhiannon Mundana ◽  
...  

2019 ◽  
Vol 71 (1) ◽  
Author(s):  
Takayuki Kaneko ◽  
Fukashi Maeno ◽  
Atsushi Yasuda ◽  
Minoru Takeo ◽  
Kenji Takasaki

AbstractNishinoshima volcano suddenly resumed eruptive activity in April 2017 after about 1.5 years of dormancy since its previous activity in 2013–2015. Nishinoshima is an uninhabited isolated island. We analyzed the eruption sequence and the eruptive process of the 2017 eruption (17 April–10 August: 116 days) by combining high-temporal-resolution images from Himawari-8 and high-spatial-resolution images from the ALOS-2, Landsat-8, and Pleiades satellites. We used these data to discuss how temporal variations in the lava effusion rate affected the flow formations and topographical features of the effused lava. The total effused volume was estimated to be 1.6 × 107 m3, and the average effusion rate was 1.5 × 105 m3/day (1.7 m3/s). Based on variations in the thermal anomalies in the 1.6-μm band of Himawari-8, which roughly coincided with that of the lava effusion rate estimated by ALOS-2, the activity was segmented into five stages. In Stage 1 (17–30 April: 14 days), the lava effusion rate was the highest, and lava flowed to the west and southwest. Stage 2 (1 May–5 June: 36 days) showed a uniform decrease in flow, and lava flowed to the southwest and formed the southwestern lava delta. During Stage 3 (6–15 June: 10 days), the lava effusion rate increased in a pulsed manner, the flow direction changed from southwestward to westward, and a narrow lava flow effused from the southern slope of the cone. In Stage 4 (16 June–31 July: 46 days), the lava effusion rate decreased and lava flowed westward through lava tubes, enlarging the western lava delta. Around the end of July, lava effusion mostly stopped. Finally, in Stage 5 (1–10 August: 10 days), explosive eruptions occurred sporadically. The variation in lava effusion rate seemed to play an important role in forming different flow patterns of lava on Nishinoshima. In Stages 1 and 3, lava flowed in multiple directions, while in Stages 2 and 4, it flowed in single direction, probably because the effusion rate was lower. A pulsed increase in the lava effusion rate during Stage 3 caused new breaks and disturbances of the lava passages near the vents, which resulted in changes in flow directions. Differences in the size of lava lobes between the southwestern and western deltas are also considered to result from differences in the lava effusion rate.


Sign in / Sign up

Export Citation Format

Share Document