scholarly journals Texture Feature Extraction of Lumbar Spine Trabecular Bone Radiograph Image using Laplacian of Gaussian Filter with KNN Classification to Diagnose Osteoporosis

2021 ◽  
Vol 2070 (1) ◽  
pp. 012137
Author(s):  
Kavita Avinash Patil ◽  
K V Mahendra Prashanth ◽  
A Ramalingaiah

Abstract The human bones are categorized based on elemental micro architecture and porosity. The porosity of the inner trabecular bone is high that is 40-95% and the nature of the bone is soft and spongy whereas the cortical bone is harder and is less porous that is 5 to 15%. Osteoporosis is a disease that normally affects women usually after their menopause. It largely causes mild bone fractures and further stages lead to the demise of an individual. The detection of Osteoporosis in Lumbar Spine has been widely recognized as a promising way to frequent fractures. Therefore, premature analysis of osteoporosis will estimate the risk of the bone fracture which prevents life threats. The paper is systematized in two different sections to classify normal (non-osteoporosis) and abnormal(osteoporosis)Lumbar spine trabecular bone. In this method, the first section is based on discriminating the lumbar spine trabecular bone micro-architecture predisposing by means of first and second order directional derivative of Laplacian of Gaussian filter with different standard deviation to acquire the minimum and maximum responses. The dimension reduction of texture features, quantization and adjacent scale coding with weighted multipliers are used to lessen the intensity variations of texture features. The second section is based on the reduction of histogram features as a training data set for classification of normal and osteoporotic images of lumbar spine (L1-L4) using K-Nearest Neighborhood (KNN) classifier. The tested dataset result gives effective classification accuracy of 97.22% with lesser texture feature dimension. The usage of weight multiplier as well as quantization technique plays a major role for the improvement of accuracy to diagnose osteoporosis for an input noisy and noiseless image.

2018 ◽  
Vol 7 (2.20) ◽  
pp. 291 ◽  
Author(s):  
B Saroja ◽  
A Selwin Mich Priyadharson

Colon or Bowel or Colorectal Cancer (CRC) is commonly determined by diagnosing a sample of colon tissue and further analysed by medical imaging. The colon tissue classification method count on specific changes between texture features extracted from benign and malignant regions. The variations in the image acquisition methods effects the colon tissue analysis. In this paper, an Upgraded Spatial Gray Level Dependence Matrices (U-SGLDM) is emphasized to extract textural features. The licensed image set of all applicable types of tissues within colon cancer are used for experimentation. Several texture feature sets are extracted to show the significant differences among the eight colon cancer biopsy images in the image data set. The fractal dimension-Hurst Coefficient is added to U-SGLDM for long range assessment. The Prominence of the analysis evoked in the representation of histopathological image structure over longer periods.  


2019 ◽  
Vol 4 (1) ◽  
pp. 1
Author(s):  
Candra Dewi ◽  
Suci Sundari ◽  
Mardji Mardji

Patchouli (Pogostemon Cablin Bent) has higher PA (Patchouli Alcohol) and oil production if grown in soil containing 75% organic matter. One way that can be used to detect the content of organic matter is to use soil images. The problem in the use of soil images is the color of the soil that is almost similar, namely the gradation between dark brown to black. Therefore, color features are not enough to be used as input in the recognition process. For this purposes, texture features are added in this study in addition to color features. The color features are extracted using color moment and the texture features are extracted using Gray Level Co-occurrence Matrix (GLCM). These feature was then chosen to get the best combination as input in the identification process using the Backpropagation Neural Network (BPNN). The system identifies the quantity of soil organic matter into five classes, namely very low, low, medium, high, and very high. The highest accuracy result obtained was 73% and MSE value 0.5122 by using five GLCM features (Angular Second Moment, contrast, correlation, Inverse Difference Moment, and entropy). This result was obtained by using the BPNN parameter, namely learning rate values 0.5, maximum iteration values of 1000, number training data 210, and total test data 12.


Author(s):  
Salman Qadri

The purpose of this study is to highlight the significance of machine vision for the Classification of kidney stone identification. A novel optimized fused texture features frame work was designed to identify the stones in kidney.  A fused 234 texture feature namely (GLCM, RLM and Histogram) feature set was acquired by each region of interest (ROI). It was observed that on each image 8 ROI’s of sizes (16x16, 20x20 and 22x22) were taken. It was difficult to handle a large feature space 280800 (1200x234). Now to overcome this data handling issue we have applied feature optimization technique namely POE+ACC and acquired 30 most optimized features set for each ROI. The optimized fused features data set 3600(1200x30) was used to four machine vision Classifiers that is Random Forest, MLP, j48 and Naïve Bayes. Finally, it was observed that Random Forest provides best results of 90% accuracy on ROI 22x22 among the above discussed deployed Classifiers


2014 ◽  
Vol 2014 ◽  
pp. 1-14 ◽  
Author(s):  
Karthik Kalyan ◽  
Binal Jakhia ◽  
Ramachandra Dattatraya Lele ◽  
Mukund Joshi ◽  
Abhay Chowdhary

The preliminary study presented within this paper shows a comparative study of various texture features extracted from liver ultrasonic images by employing Multilayer Perceptron (MLP), a type of artificial neural network, to study the presence of disease conditions. An ultrasound (US) image shows echo-texture patterns, which defines the organ characteristics. Ultrasound images of liver disease conditions such as “fatty liver,” “cirrhosis,” and “hepatomegaly” produce distinctive echo patterns. However, various ultrasound imaging artifacts and speckle noise make these echo-texture patterns difficult to identify and often hard to distinguish visually. Here, based on the extracted features from the ultrasonic images, we employed an artificial neural network for the diagnosis of disease conditions in liver and finding of the best classifier that distinguishes between abnormal and normal conditions of the liver. Comparison of the overall performance of all the feature classifiers concluded that “mixed feature set” is the best feature set. It showed an excellent rate of accuracy for the training data set. The gray level run length matrix (GLRLM) feature shows better results when the network was tested against unknown data.


Webology ◽  
2021 ◽  
Vol 18 (2) ◽  
pp. 509-518
Author(s):  
Payman Hussein Hussan ◽  
Syefy Mohammed Mangj Al-Razoky ◽  
Hasanain Mohammed Manji Al-Rzoky

This paper presents an efficient method for finding fractures in bones. For this purpose, the pre-processing set includes increasing the quality of images, removing additional objects, removing noise and rotating images. The input images then enter the machine learning phase to detect the final fracture. At this stage, a Convolutional Neural Networks is created by Genetic Programming (GP). In this way, learning models are implemented in the form of GP programs. And evolve during the evolution of this program. Then finally the best program for classifying incoming images is selected. The data set in this work is divided into training and test friends who have nothing in common. The ratio of training data to test is equal to 80 to 20. Finally, experimental results show good results for the proposed method for bone fractures.


Forests ◽  
2020 ◽  
Vol 11 (7) ◽  
pp. 763
Author(s):  
Hans-Joachim Klemmt ◽  
Rudolf Seitz ◽  
Christoph Straub

Windthrow and storm damage are crucial issues in practical forestry. We propose a method for rapid detection of windthrow hotspots in airborne digital orthophotos. Therefore, we apply Haralick’s texture features on 50 × 50 m cells of the orthophotos and classify the cells with a random forest algorithm. We apply the classification results from a training data set on a validation set. The overall classification accuracy of the proposed method varies between 76% for fine distinction of the cells and 96% for a distinction level that tried to detect only severe damaged cells. The proposed method enables the rapid detection of windthrow hotspots in forests immediately after their occurrence in single-date data. It is not adequate for the determination of areas with only single fallen trees. Future research will investigate the possibilities and limitations when applying the method on other data sources (e.g., optical satellite data).


Author(s):  
Kavita Avinash Patil ◽  
K. V. Mahendra Prashanth ◽  
A. Ramalingaiah

<p class="abstract">The human bones are categorized based on elemental micro architecture and porosity. The porosity of the inner trabecular bone is high that is 40-95% and the nature of the bone is soft and spongy where as the cortical bone is harder and is less porous that is 5 to 15%. Osteoporosis is a disease that normally affects women usually after their menopause. It largely causes mild bone fractures and further stages lead to the demise of an individual. This analysis is on the basis of bone mineral density (BMD) standards obtained through a variety of scientific methods experimented from different skeletal regions. The detection of osteoporosis in lumbar spine has been widely recognized as a promising way to frequent fractures. Therefore, premature analysis of osteoporosis will estimate the risk of the bone fracture which prevents life threats. This paper focuses on the advanced technology in imaging systems and fracture probability analysis of osteoporosis detection. The various segmentation techniques are explored to examine osteoporosis in particular region of the image and further significant attributes are extracted using different methods to classify normal and abnormal (osteoporotic) bones. The limitations of the reviewed papers are more in feature dimensions, lesser accuracy and expensive imaging modalities like computed tomography (CT), magnetic resonance imaging (MRI), and DEXA. To overcome these limitations it is suggested to have less feature dimensions, more accuracy and cost-effective imaging modality like X-ray. This is required to avoid bone fractures and to improve BMD with precision which further helps in the diagnosis of osteoporosis.</p>


2017 ◽  
Author(s):  
◽  
Eric B. Brewster

In the field of machine learning and pattern recognition, texture has been a prominent area of research. Humans are uniquely equipped to distinguish texture; however, computers are more equipped to automate the process. Computers accomplish this by taking images and extracting meaningful features that describe their texture. Some of these features are the Haralick texture features, local binary pattern (LBP), and the local direction pattern (LDP). Using the local directional pattern as an example, we propose a new texture feature called the histogram of partitioned localized image textures (HoPLIT). This feature utilizes a set of filters, not necessarily directional, and generates filter response vectors at every pixel location. These response vectors can be thought of as words in a document, which causes one to think of the bag-of-words model. Using the bag-of-words model, a codebook is created by partitioning a subset of response vectors from the entire data set. The partitions are represented by their mean texture and thus a word in the codebook. The mean textures now represent the keywords within the document, i.e. image. A histogram descriptor for an image is the frequency of pixels that belong to each partition. This feature is applied to a texture classification and segmentation problem as well as object detection. Within each problem domain, the HoPLIT feature is compared to the Haralick texture features, LBP, and LDP. The HoPLIT feature does very well classifying texture as well as segmenting large texture mosaics. HoPLIT also shows a surprising robustness to noise. Object detection proves to be slightly more difficult than texture classification for HoPLIT. However, it continues to outperform LBP and LDP.


Author(s):  
Candra Dewi ◽  
Akbar Grahadhuita ◽  
Lailil Muflikhah

<span>Patchouli is one of the essential plants that have the most potential and widely cultivated in Indonesia. Patchouli is greedily absorbing soil nutrients and organic matter. Therefore, the selection of soil with high organic matter will maximize the patchouli’s productivity. This paper aims to facilitate soil’s organic matter identification by classifying soil image based on the combination of color and texture features. The color feature extraction was done using the Color Moments method and the texture feature was done using Gray Level Co-occurrence Matrix (GLCM) method. The selection of features was performed to obtain the best combination of color and texture features. The selected features then was used as input of classification by using Modified K-Nearest Neighbor (MKNN). The samples of soil that used as data were taken from several districts in Blitar, East Java province. The testing result of this research showed the highest accuracy of 93,33% by using 180 training data, and also particular color and texture feature combination.</span>


Sign in / Sign up

Export Citation Format

Share Document