underwater photography
Recently Published Documents


TOTAL DOCUMENTS

90
(FIVE YEARS 15)

H-INDEX

11
(FIVE YEARS 1)

2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Simon Emberton ◽  
Christopher Simons

AbstractWithin the worldwide diving community, underwater photography is becoming increasingly popular. However, the marine environment presents certain challenges for image capture, with resulting imagery often suffering from colour distortions, low contrast and blurring. As a result, image enhancement software is used not only to enhance the imagery aesthetically, but also to address these degradations. Although feature-rich image enhancement software products are available, little is known about the user experience of underwater photographers when interacting with such tools. To address this gap, we conducted an online questionnaire to better understand what software tools are being used, and face-to-face interviews to investigate the characteristics of the image enhancement user experience for underwater photographers. We analysed the interview transcripts using the pragmatic and hedonic categories from the frameworks of Hassenzahl (Funology, Kluwer Academic Publishers, Dordrecht, pp 31–42, 2003; Funology 2, Springer, pp 301–313, 2018) for positive and negative user experience. Our results reveal a moderately negative experience overall for both pragmatic and hedonic categories. We draw some insights from the findings and make recommendations for improving the user experience for underwater photographers using image enhancement tools.


2021 ◽  
Vol 11 (21) ◽  
pp. 10200
Author(s):  
Chun-Feng Chou ◽  
Cheng-Mu Tsai ◽  
Chao-Hsien Chen ◽  
Yung-Hao Wong ◽  
Yi-Chin Fang ◽  
...  

In fields such as biology, archeology, and industry, underwater photogrammetry can be achieved using consumer-grade equipment. However, camera operations underwater differ considerably from those on land because underwater photogrammetry involves different optical phenomena. On the basis of the requirements and specifications of the marine vessel Polaris, we developed a novel underwater camera with prime and zoom lenses and a high resolving power. The camera can be used in the spectrum in shallow water and the blue–green spectrum in deep water. In the past, ordinary cameras would be placed in waterproof airtight boxes for underwater photography. These cameras were not optimized to the underwater spectrum and environment, resulting in no breakthroughs in resolving power. Furthermore, the use of the blue spectrum greatly increases during underwater and particularly deep-water surveying. Chromatic aberration and focus-point displacement generated by the shift from the shallow-water spectrum to the blue–green spectrum in deep water makes universal underwater photography even more difficult. Our proposed optical design aimed to overcome such challenges for the development of a high-resolution underwater surveying camera. We designed a prime lens and a zoom lens. We adopted a waterproof dome window on the outer surface as the basic structure and optimized it in accordance with the conditions of different water depths and spectra to obtain distortion within ±2% and high-resolution underwater imaging quality. For the zoom lens design, we employed a genetic algorithm in Zemax to attenuate chromatic aberration as a kind of extended optimization. This novel optical design that can be used in all waters is expected to greatly reduce the volume and weight of conventional underwater cameras by more than 50% and 60%, respectively, and increase their resolving power by 30–40%.


2021 ◽  
Vol 37 (4) ◽  
pp. 312-321
Author(s):  
Young-Hwa Jung ◽  
Gyuho Kim ◽  
Woo Sik Yoo

Underwater archaeology relies heavily on photography and video image recording during surveillances and excavations like ordinary archaeological studies on land. All underwater images suffer poor image quality and distortions due to poor visibility, low contrast and blur, caused by differences in refractive indices of water and air, properties of selected lenses and shapes of viewports. In the Yellow Sea (between mainland China and the Korean peninsula), the visibility underwater is far less than 1 m, typically in the range of 30 cm to 50 cm, on even a clear day, due to very high turbidity. For photographing 1 m x 1 m grids underwater, a very wide view angle (180o) fisheye lens with an 8 mm focal length is intentionally used despite unwanted severe barrel-shaped image distortion, even with a dome port camera housing. It is very difficult to map wide underwater archaeological excavation sites by combining severely distorted images. Development of practical compensation methods for distorted underwater images acquired through the fisheye lens is strongly desired. In this study, the source of image distortion in underwater photography is investigated. We have identified the source of image distortion as the mismatching, in optical axis and focal points, between dome port housing and fisheye lens. A practical image distortion compensation method, using customized image processing software, was explored and verified using archived underwater excavation images for effectiveness in underwater archaeological applications. To minimize unusable area due to severe distortion after distortion compensation, practical underwater photography guidelines are suggested.


2021 ◽  
Vol 8 ◽  
Author(s):  
Federico Betti ◽  
Francesco Enrichetti ◽  
Giorgio Bavestrello ◽  
Andrea Costa ◽  
Alessandra Moreni ◽  
...  

Chilean Patagonia hosts one of the extensive fjord systems in the world, spanning more than 1,600 km between 41 and 55°S, and with a complex geomorphology and hydrography that supports rich and unique assemblages of marine fauna. The biodiversity of benthic organisms is possibly further enhanced by the geographic position of the region that extends far south into subantarctic waters. However, we currently lack an exhaustive picture of the zonation and ecological functioning of the benthic communities within Chilean fjords. The present study provides a detailed examination of the hard substrata megabenthic communities inhabiting the Puyuhuapi and Jacaf fjord system, in the Aysén Region of Chile. Fifty-nine stations scattered along these fjords were explored through SCUBA diving surveys, at depths between 5 and 30 m, and 16 stations were characterized in terms of benthic cover and diversity using replicated underwater photography. Ten hard bottom megabenthic communities were identified within the fjords, with some communities newly described for this region. Community composition varied both along-fjord, and with depth, and was apparently driven by variation in environmental properties. Our characterization of these fjord communities improves overall knowledge of the functioning of the fjords, and provides a useful baseline against which future anthropogenic pressures can be assessed. Future shifts in bathymetric and geographical distributions might indicate detrimental effects of climate changes, and we therefore propose that characteristic communities could be adopted as “sentinels” for overall environmental status of these unique fjord ecosystems. In this regard, detailed mapping of the distribution of megabenthic communities can provide a fundamental tool that assists in best management practices for these ecosystems.


2021 ◽  
Vol 8 ◽  
Author(s):  
Megan E. Hanna ◽  
Erin M. Chandler ◽  
Brice X. Semmens ◽  
Tomoharu Eguchi ◽  
Garrett E. Lemons ◽  
...  

East Pacific (EP) green turtles (Chelonia mydas) have undergone substantial population recovery over the last two decades owing to holistic protection at nesting beaches and foraging areas. At the northern end of their range in southern California United States, green turtles have been seen in more areas and in greater numbers since 2014 than before as a result. A resident population of green turtles has established near La Jolla Shores (LJS), a protected site with daily marine tourism (e.g., kayakers, snorkelers, divers). To study this local aggregation, innovative and non-invasive methods were required because the traditional capture-recapture methods were infeasible due to public relations sensitivities. Green turtle habituation to humans at this site has created a unique opportunity for citizen-based science using underwater photography to document turtles and their surroundings. We obtained 309 usable photographs of local green turtles from members of the dive/snorkel community in LJS. Photos were taken from April 2016 to June 2019. Images were processed in Hotspotter—a patterned species instance recognition software—to identify seven individuals, five of which were consistently photographed throughout that period. These images helped infer minimum residency duration (MRD), seasonal differences in algal coverage on the carapace, habitat association, behavioral patterns, and diet. Mean MRD was 424 days (SE = 131 days, calculated from entire population, n = 7), during which turtles were active in 82.8% of the photographs; the remainder of the photographs depicted foraging (14.9%) or resting behavior (2.3%). Green turtles were seen foraging in water temperatures as low as 15.8°C, the lowest recorded temperature for foraging green turtles documented in literature. Additional opportunistic observational platforms were used to look at trends of increasing green turtle abundance in southern California since 2015 that supported the arrival of a new aggregation of green turtles in LJS. Our use of citizen-sourced photographs confirms the presence of a resident aggregation of green turtles in LJS. Existence of green turtles and other protected species in highly populated areas provide excellent opportunities to educate beachgoers and seafarers about conservation of these species. This study also highlights the value of citizen-based science in areas where traditional research techniques are ill-suited.


2021 ◽  
Vol 55 (3) ◽  
pp. 132-133
Author(s):  
Heather M. Tabisola ◽  
Calvin C. Mordy ◽  
Brian Skerry ◽  
Christopher Meinig

Abstract Photography can be a powerful instrument for change. Combining scientific research, new imaging technologies equipped with Artificial Intelligence, and underwater photography, we'll share near- to real-time changes of biodiversity in the Arctic and highlight these rapidly changing and unique environments. Through this project we will continually develop new ways of creating images and stories that both celebrate the sea yet also highlight environmental stress.Scientists often speak of a “new Arctic” to describe the region's rapidly changing landscape and marine systems. Temperatures are higher than before, sea ice is dwindling, and many experts believe the far north is quickly transforming into something unrecognizable.A new Arctic will be warmer, rainier, and substantially less frozen. Animals that used to be common may disappear, while new species may move in to take their place. Opportunities for hunting and fishing by sea ice are declining. And shipping in the region is already significantly increasing as the ice disappears. With this, planning for natural and human-made disasters is an increasingly daunting task.We want to take an Ocean-Shot and visually capture this change in a way that has never been done before. We want to transform the way in which science can be conducted.


2021 ◽  
pp. 195-206
Author(s):  
Hao Zhang ◽  
Fei Yuan ◽  
Jiajun Chen ◽  
Xinyu He ◽  
Yi Zhu

Author(s):  
Marek Hendrykowski

The article analyses and interprets Robert Stando’s little-known educational film Strach ma wielkie oczy [Fear has large eyes]. The film was made in 1965 and produced by the Documentary Film Studio in Warsaw. The author explores the original character of the film, reconstructing the stylistic and compositional techniques used by filmmakers, among others, in the field of cinematography (underwater photography), editing, word function, music, sound effects etc.


2020 ◽  
Vol 69 ◽  
pp. 291-311
Author(s):  
Roger C. Searle

Anthony (Tony) Laughton was an oceanographer who promoted the science of oceanograpy in Britain. Focusing on the shape of the seafloor, his work included underwater photography, ocean drilling, long-range side-scan sonar and scientific charting of the ocean floor. Following undergraduate studies at King's College, Cambridge, he joined Maurice Hill (FRS 1962) at the Cambridge Department of Geodesy and Geophysics, beginning a career in marine geophysics. Following his PhD, he spent a year at Lamont Geological Observatory, USA, where he met many leading US workers, and became interested in deep-seafloor photography and bathymetric mapping. Returning to the UK, he joined the National Institute of Oceanography (Institute of Oceanographic Sciences from 1973) at Wormley, Surrey, and became director in 1978. He developed the first UK seafloor camera, was an enthusiastic supporter and user of the revolutionary Precision Echo Sounder and later of the GLORIA long-range side-scan sonar. He played a significant part in the International Indian Ocean Expedition, subsequently developing a new understanding of the Gulf of Aden. A consummate committee man, he had a vital role in reviving the General Bathymetric Chart of the Oceans and promoted UK involvement in the international Deep-Sea Drilling Project. He was an accomplished amateur musician (playing French horn), small-boat sailor and handyman.


Sign in / Sign up

Export Citation Format

Share Document