vehicle assignment
Recently Published Documents


TOTAL DOCUMENTS

48
(FIVE YEARS 19)

H-INDEX

11
(FIVE YEARS 2)

2021 ◽  
Vol 13 (23) ◽  
pp. 13484
Author(s):  
Weimin Ma ◽  
Jiakai Chen ◽  
Hua Ke

A one-way electric-car-sharing system is an environmentally friendly option for urban transportation systems, which can reduce air pollution and traffic congestion with effective vehicle assignment. However, electric vehicle assignment usually faces a dilemma where an insufficient battery level cannot fulfill the requests of users. It greatly affects assignment choices and order fulfillment rates, resulting in the loss of platform profit. In this study, with the assumption that the users agree to wait for a period of time during which electric vehicles can be charged to fulfill trip demands, we proposed a waiting-time policy and introduced users’ utility to measure user retention. Then, we set up a bi-level electric-vehicle assignment model with a waiting-time policy to optimize the assignment and waiting decisions. The numerical results show that under the waiting-time policy, we can achieve more profits, a higher trip fulfillment rate, and a significant improvement in vehicle utilization. It not only generates more profits for the platform but also provides a better service for users and lays a user foundation for the future development and operation.


2021 ◽  
Author(s):  
Andres Fielbaum ◽  
Maximilian Kronmueller ◽  
Javier Alonso-Mora

AbstractOn-demand mobility systems in which passengers use the same vehicle simultaneously are a promising transport mode, yet difficult to control. One of the most relevant challenges relates to the spatial imbalances of the demand, which induce a mismatch between the position of the vehicles and the origins of the emerging requests. Most ridepooling models face this problem through rebalancing methods only, i.e., moving idle vehicles towards areas with high rejections rate, which is done independently from routing and vehicle-to-orders assignments, so that vehicles serving passengers (a large portion of the total fleet) remain unaffected. This paper introduces two types of techniques for anticipatory routing that affect how vehicles are assigned to users and how to route vehicles to serve such users, so that the whole operation of the system is modified to reach more efficient states for future requests. Both techniques do not require any assumption or exogenous knowledge about the future demand, as they depend only on current and recent requests. Firstly, we introduce rewards that reduce the cost of an assignment between a vehicle and a group of passengers if the vehicle gets routed towards a high-demand zone. Secondly, we include a small set of artificial requests, whose request times are in the near future and whose origins are sampled from a probability distribution that mimics observed generation rates. These artificial requests are to be assigned together with the real requests. We propose, formally discuss and experimentally evaluate several formulations for both approaches. We test these techniques in combination with a state-of-the-art trip-vehicle assignment method, using a set of real rides from Manhattan. Introducing rewards can diminish the rejection rate to about nine-tenths of its original value. On the other hand, including future requests can reduce users’ traveling times by about one-fifth, but increasing rejections. Both methods increase the vehicles-hour-traveled by about 10%. Spatial analysis reveals that vehicles are indeed moved towards the most demanded areas, such that the reduction in rejections rate is achieved mostly there.


2021 ◽  
Vol 2021 ◽  
pp. 1-17
Author(s):  
Bo Zhang ◽  
Lei Wang ◽  
Li Li ◽  
Xu Lei ◽  
Yongfeng Ju

On-demand station-based one-way carsharing is widely adopted for battery electric vehicle sharing systems, which is regarded as a supplement of urban mobility and a promising approach to the utilization of green energy vehicles. The service model of these carsharing systems allows users to select vehicles based on their own judgment on vehicle battery endurance, while users tend to pick up vehicles with the longest endurance distances. This phenomenon makes instant-access systems lose efficiency on matching available vehicles with diverse user requests and limits carsharing systems for higher capacity. We proposed a vehicle assignment method to allocate vehicles to users that maximize the utility of battery, which requires the system to enable short-term reservation rather than instant access. The methodology is developed from an agent-based discrete event simulation framework with a first-come-first-serve logic module for instant access mode and a resource matching optimization module for short-term reservation mode. Results show that the short-term reservation mode can at most serve 20% more users and create 47% more revenue than instant access mode under the scenario of this research. This paper also points out the equilibrium between satisfying more users by efficiently allocating vehicles and distracting users by disabling instant access and suggests that the reservation time could be 15 minutes.


2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Tingting Fu ◽  
Peng Liu ◽  
Kun Liu ◽  
Peng Li

Nowadays, the availability of parking spaces is far behind the quick rising number of cars. Rather than building more lots, a better way is to share private-owned parking spaces. However, this faces the challenge that users are not willing to expose their privacy to the public. To solve this problem, we propose a new architecture for parking space sharing, integrating homomorphic cryptography into the design of a secure protocol for parking space searching and booking. The proposed privacy-preserving matching scheme (PPMS) is constructed in an untrusted third-party service system including two independent entities, namely, a server and an intermediary platform. Via the participant comparison protocol (PCP), a driver can choose from the matching result and be navigated to the parking space near his destination, without knowing any information of the provider and vice versa. In the meanwhile, in order to further improve the efficiency of matching, we also propose a block algorithm based on the longitude and latitude (BABLL), which utilizes a novel partitioning scheme. The feasibility of the architecture is validated through the detailed theoretical analysis and extensive performance evaluations, including the assessment of the resilience to attacks.


Author(s):  
Krishna Murthy Gurumurthy ◽  
Felipe de Souza ◽  
Annesha Enam ◽  
Joshua Auld

Transportation Network Companies (TNCs) have been steadily increasing the share of total trips in metropolitan areas across the world. Micro-modeling TNC operation is essential for large-scale transportation systems simulation. In this study, an agent-based approach for analyzing supply and demand aspects of ride-sourcing operation is done using POLARIS, a high-performance simulation tool. On the demand side, a mode-choice model for the agent and a vehicle-ownership model that informs this choice are developed. On the supply side, TNC vehicle-assignment strategies, pick-up and drop-off operations, and vehicle repositioning are modeled with congestion feedback, an outcome of the mesoscopic traffic simulation. Two case studies of Bloomington and Chicago in Illinois are used to study the framework’s computational speed for large-scale operations and the effect of TNC fleets on a region’s congestion patterns. Simulation results show that a zone-based vehicle-assignment strategy scales better than relying on matching closest vehicles to requests. For large regions like Chicago, large fleets are seen to be detrimental to congestion, especially in a future in which more travelers will use TNCs. From an operational point of view, an efficient relocation strategy is critical for large regions with concentrated demand, but not regulating repositioning can worsen empty travel and, consequently, congestion. The TNC simulation framework developed in this study is of special interest to cities and regions, since it can be used to model both demand and supply aspects for large regions at scale, and in reasonably low computational time.


Sign in / Sign up

Export Citation Format

Share Document