scholarly journals A Study on the Detecting Cycle Slips and a Repair Algorithm for B1/B3

Electronics ◽  
2021 ◽  
Vol 10 (23) ◽  
pp. 2925
Author(s):  
Yanchen Dong ◽  
Peipei Dai ◽  
Sen Wang ◽  
Jianping Xing ◽  
Yulei Xue ◽  
...  

For the current problem of cycle slips in the observation data of the BDS-2 and BDS-3 (Bei Dou Navigation Satellite System), in this paper, BDS B1I and B3I signals are used as research objects to study the detection of cycle slips, and their repair algorithm. The Geometry-free (GF) and Melbourne–Wübeena (MW) combination algorithm are used for the detection of cycle slips. A new method of arc partition is proposed in this work to detect cycle slips as the boundary to delimit two different observation arcs. In this way, the different values of cycle slips can be divided and marked. Moreover, the gross errors can be removed. Finally, the detection of cycle slips and the analysis of all epochs can be completed and repaired. This work also analyzes the dual-frequency data effect of cycle slips on code multipath observation. The results showed that this method greatly improved the speed of detection of cycle slips.

2021 ◽  
Vol 13 (15) ◽  
pp. 2972
Author(s):  
Wei Xu ◽  
Wen-Bin Shen ◽  
Cheng-Hui Cai ◽  
Li-Hong Li ◽  
Lei Wang ◽  
...  

The present Global Navigation Satellite System (GNSS) can provide at least double-frequency observations, and especially the Galileo Navigation Satellite System (Galileo) can provide five-frequency observations for all constellation satellites. In this contribution, precision point positioning (PPP) models with Galileo E1, E5a, E5b, E5 and E6 frequency observations are established, including a dual-frequency (DF) ionospheric-free (IF) combination model, triple-frequency (TF) IF combination model, quad-frequency (QF) IF combination model, four five-frequency (FF) IF com-bination models and an FF uncombined (UC) model. The observation data of five stations for seven days are selected from the multi-GNSS experiment (MGEX) network, forming four time-frequency links ranging from 454.6 km to 5991.2 km. The positioning and time-frequency transfer performances of Galileo multi-frequency PPP are compared and evaluated using GBM (which denotes precise satellite orbit and clock bias products provided by Geo Forschung Zentrum (GFZ)), WUM (which denotes precise satellite orbit and clock bias products provided by Wuhan University (WHU)) and GRG (which denotes precise satellite orbit and clock bias products provided by the Centre National d’Etudes Spatiales (CNES)) precise products. The results show that the performances of the DF, TF, QF and FF PPP models are basically the same, the frequency stabilities of most links can reach sub10−16 level at 120,000 s, and the average three-dimensional (3D) root mean square (RMS) of position and average frequency stability (120,000 s) can reach 1.82 cm and 1.18 × 10−15, respectively. The differences of 3D RMS among all models are within 0.17 cm, and the differences in frequency stabilities (in 120,000 s) among all models are within 0.08 × 10−15. Using the GRG precise product, the solution performance is slightly better than that of the GBM or WUM precise product, the average 3D RMS values obtained using the WUM and GRG precise products are 1.85 cm and 1.77 cm, respectively, and the average frequency stabilities at 120,000 s can reach 1.13 × 10−15 and 1.06 × 10−15, respectively.


2021 ◽  
Vol 2 (1) ◽  
Author(s):  
Jin Wang ◽  
Qin Zhang ◽  
Guanwen Huang

AbstractThe Fractional Cycle Bias (FCB) product is crucial for the Ambiguity Resolution (AR) in Precise Point Positioning (PPP). Different from the traditional method using the ionospheric-free ambiguity which is formed by the Wide Lane (WL) and Narrow Lane (NL) combinations, the uncombined PPP model is flexible and effective to generate the FCB products. This study presents the FCB estimation method based on the multi-Global Navigation Satellite System (GNSS) precise satellite orbit and clock corrections from the international GNSS Monitoring and Assessment System (iGMAS) observations using the uncombined PPP model. The dual-frequency raw ambiguities are combined by the integer coefficients (4,− 3) and (1,− 1) to directly estimate the FCBs. The details of FCB estimation are described with the Global Positioning System (GPS), BeiDou-2 Navigation Satellite System (BDS-2) and Galileo Navigation Satellite System (Galileo). For the estimated FCBs, the Root Mean Squares (RMSs) of the posterior residuals are smaller than 0.1 cycles, which indicates a high consistency for the float ambiguities. The stability of the WL FCBs series is better than 0.02 cycles for the three GNSS systems, while the STandard Deviation (STD) of the NL FCBs for BDS-2 is larger than 0.139 cycles. The combined FCBs have better stability than the raw series. With the multi-GNSS FCB products, the PPP AR for GPS/BDS-2/Galileo is demonstrated using the raw observations. For hourly static positioning results, the performance of the PPP AR with the three-system observations is improved by 42.6%, but only 13.1% for kinematic positioning results. The results indicate that precise and reliable positioning can be achieved with the PPP AR of GPS/BDS-2/Galileo, supported by multi-GNSS satellite orbit, clock, and FCB products based on iGMAS.


2010 ◽  
Vol 63 (2) ◽  
pp. 269-287 ◽  
Author(s):  
S. Abbasian Nik ◽  
M. G. Petovello

These days, Global Navigation Satellite System (GNSS) technology plays a critical role in positioning and navigation applications. Use of GNSS is becoming more of a need to the public. Therefore, much effort is needed to make the civilian part of the system more accurate, reliable and available, especially for the safety-of-life purposes. With the recent revitalization of Russian Global Navigation Satellite System (GLONASS), with a constellation of 20 satellites in August 2009 and the promise of 24 satellites by 2010, it is worthwhile concentrating on the GLONASS system as a method of GPS augmentation to achieve more reliable and accurate navigation solutions.


2019 ◽  
Vol 54 (3) ◽  
pp. 97-112
Author(s):  
Mostafa Hamed ◽  
Ashraf Abdallah ◽  
Ashraf Farah

Abstract Nowadays, Precise Point Positioning (PPP) is a very popular technique for Global Navigation Satellite System (GNSS) positioning. The advantage of PPP is its low cost as well as no distance limitation when compared with the differential technique. Single-frequency receivers have the advantage of cost effectiveness when compared with the expensive dual-frequency receivers, but the ionosphere error makes a difficulty to be completely mitigated. This research aims to assess the effect of using observations from both GPS and GLONASS constellations in comparison with GPS only for kinematic purposes using single-frequency observations. Six days of the year 2018 with single-frequency data for the Ethiopian IGS station named “ADIS” were processed epoch by epoch for 24 hours once with GPS-only observations and another with GPS/GLONASS observations. In addition to “ADIS” station, a kinematic track in the New Aswan City, Aswan, Egypt, has been observed using Leica GS15, geodetic type, dual-frequency, GPS/GLONASS GNSS receiver and single-frequency data have been processed. Net_Diff software was used for processing all the data. The results have been compared with a reference solution. Adding GLONASS satellites significantly improved the satellite number and Position Dilution Of Precision (PDOP) value and accordingly improved the accuracy of positioning. In the case of “ADIS” data, the 3D Root Mean Square Error (RMSE) ranged between 0.273 and 0.816 m for GPS only and improved to a range from 0.256 to 0.550 m for GPS/GLONASS for the 6 processed days. An average improvement ratio of 24%, 29%, 30%, and 29% in the east, north, height, and 3D position components, respectively, was achieved. For the kinematic trajectory, the 3D position RMSE improved from 0.733 m for GPS only to 0.638 m for GPS/GLONASS. The improvement ratios were 7%, 5%, 28%, and 13% in the east, north, height, and 3D position components, respectively, for the kinematic trajectory data. This opens the way to add observations from the other two constellations (Galileo and BeiDou) for more accuracy in future research.


2018 ◽  
Vol 8 (11) ◽  
pp. 2322 ◽  
Author(s):  
Lin Zhao ◽  
Mouyan Wu ◽  
Jicheng Ding ◽  
Yingyao Kang

The strategic position of the polar area and its rich natural resources are becoming increasingly important, while the northeast and northwest passages through the Arctic are receiving much attention as glaciers continue to melt. The global navigation satellite system (GNSS) can provide real-time observation data for the polar areas, but may suffer low elevation problems of satellites, signals with poor carrier-power-to-noise-density ratio (C/N0), ionospheric scintillations, and dynamic requirements. In order to improve the navigation performance in polar areas, a deep-coupled navigation system with dual-frequency GNSS and a grid strapdown inertial navigation system (SINS) is proposed in the paper. The coverage and visibility of the GNSS constellation in polar areas are briefly reviewed firstly. Then, the joint dual-frequency vector tracking architecture of GNSS is designed with the aid of grid SINS information, which can optimize the tracking band, sharing tracking information to aid weak signal channels with strong signal channels and meet the dynamic requirement to improve the accuracy and robustness of the system. Besides this, the ionosphere-free combination of global positioning system (GPS) L1 C/A and L2 signals is used in the proposed system to further reduce ionospheric influence. Finally, the performance of the system is tested using a hardware simulator and semiphysical experiments. Experimental results indicate that the proposed system can obtain a better navigation accuracy and robust performance in polar areas.


2019 ◽  
Vol 131 ◽  
pp. 01075
Author(s):  
Chen Liu ◽  
Yi Jiang ◽  
Ye Chen ◽  
Ao Xu ◽  
Junpeng Li ◽  
...  

Ionospheric delay is one of the main errors in the satellite navigation and positioning system. At present, ionospheric delay correction model and grid ionospheric information are provided to correct the error in BeiDou Navigation Satellite System (BDS). The ionospheric delay correction model is the Klobuchar model with 8 parameters at the geographic latitude for basic navigation. Grid ionospheric information is the ionospheric grid map covering China region for enhanced services. The dual-frequency pseudo-range combination data and ionospheric data from 2013 to 2018 have been used to make comprehensive assessments of the correction performance of BDS Klobuchar model and ionospheric grid information. The average correction rate of ionospheric grid information is about 85%, and the average correction rate of BDS Klobuchar model is about 73%. The correction accuracy of BDS Klobuchar model varies little, and the ionospheric grid information has a single-peak structure. The correction accuracy in summer and autumn is slightly higher than that in winter and spring. Changes in solar activity have a greater impact on BDS Klobuchar model correction bias. Ionospheric grid information owns relatively strong anti-disturbance ability, and BDS Klobuchar model also has a definite anti-disturbance capability compared with the GPS Klobuchar model.


Author(s):  
M. Chen ◽  
Q. Zhang

Abstract. In order to probe into the characteristics of positioning deviation between Beidou Navigation Satellite System (Beidou) and global positioning system (GPS), and investigate possible contribution of Beidou data to refinement of global coordinate system, refined calculation is made on observation data of 240 national reference stations that are distributed uniformly across China on the whole in this study. These stations support satellite signals of four global navigation satellite systems, including Beidou, GPS, GLONASS and Galileo, and a 5-year time span from 2016 to 2020 is adopted. In this study, PPP is calculated based on GPS data and Beidou single system data in no-difference resolution network mode, and accurate coordinates of national reference stations in two processing modes are obtained. Analysis of difference between the calculations based on Beidou data and on GPS data shows that the consistency between Beidou and GPS positioning results reaches about 5 mm in the east and in the north, and about 1.3 cm in the height direction.


2021 ◽  
Vol 13 (16) ◽  
pp. 3130
Author(s):  
Pengfei Zhang ◽  
Rui Tu ◽  
Yuping Gao ◽  
Ju Hong ◽  
Junqiang Han ◽  
...  

The modernized GPS, Galileo, and BeiDou global navigation satellite system (BDS3) offers new potential for time transfer using overlap-frequency (L1/E1/B1, L5/E5a/B2a) observations. To assess the performance of time and frequency transfer with overlap-frequency observations for GPS, Galileo, and BDS3, the mathematical models of single- and dual-frequency using the carrier-phase (CP) technique are discussed and presented. For the single-frequency CP model, the three-day average RMS values of the L5/E5a/B2a clock difference series were 0.218 ns for Galileo and 0.263 ns for BDS3, of which the improvements were 36.2% for Galileo and 43.9% for BDS3 when compared with the L1/E1/B1 solution at BRUX–PTBB. For the hydrogen–cesium time link BRUX–KIRU, the RMS values of the L5/E5a/B2a solution were 0.490 ns for Galileo and 0.608 ns for BDS3, improving Galileo by 6.4% and BDS3 by 12.5% when compared with the L1/E1/B1 solution. For the dual-frequency CP model, the average stability values of the L5/E5a/B2a solution at the BRUX–PTBB time link were 3.54∙× 10−12 for GPS, 2.20 × 10−12 for Galileo, and 2.69 × 10−12 for BDS3, of which the improvements were 21.0%, 45.1%, and 52.3%, respectively, when compared with the L1/E1/B1 solution. For the BRUX–KIRU time link, the improvements were 4.2%, 30.5%, and 36.1%, respectively.


2020 ◽  
Vol 2020 ◽  
pp. 1-17
Author(s):  
Zhouming Yang ◽  
Xin Liu ◽  
Jinyun Guo ◽  
Yaowei Xia ◽  
Xiaotao Chang

Cycle slip detection and repair play important roles in the processing of data from dual-frequency GPS receivers onboard low-Earth orbit (LEO) satellites. To detect and repair cycle slips more comprehensively, an enhanced error method (EEM) is proposed. EEM combines single-frequency and narrow-lane carrier phase observations to construct special observations and observation equation groups. These special observations differ across time and satellite (ATS). ATS observations are constructed by three steps. The first step is differencing single-frequency and narrow-lane observations through a time difference (TD). The second step is to select a satellite as a reference satellite and other satellites as nonreference satellites. The third step is to difference the single-frequency TD observations from the reference satellite and the narrow-lane TD observations from the nonreference satellites by a satellite difference. If cycle slips occur at the reference satellite, the correction values for these ATS observations can be significantly enlarged. To process all satellites, the EEM selects each satellite as a reference satellite and builds the corresponding equation group. The EEM solves these observation equation groups according to the weighted least-squares adjustment (LSA) criterion and obtains the correction values; these correction values are then used to construct the χ 2 values corresponding to different equation groups, and the EEM subsequently carries out a chi-square distribution test for these χ 2 . The satellite corresponding to the maximum χ 2 will be marked. Then, the EEM iteratively processes the other satellites. Cycle slips can be estimated by rounding the float solutions of changes in the ambiguities of cycle slip satellites to the nearest integer. The simulation test results show that the EEM can be used to detect special cycle slip pairs such as (1, 1) and (9, 7). The EEM needs only observation data in two adjacent epochs and is still applicable to observation epochs with continuous cycle slips.


2019 ◽  
Vol 11 (21) ◽  
pp. 2551
Author(s):  
Xiaomin Luo ◽  
Yidong Lou ◽  
Shengfeng Gu ◽  
Weiwei Song

Because of the special design of BeiDou navigation satellite system (BDS) constellation, the effects of ionospheric scintillation on operational BDS generally are more serious than on the global positioning system (GPS). As BDS is currently providing global services, it is increasingly important to seek strategies to mitigate the scintillation effects on BDS navigation and positioning services. In this study, an improved cycle-slip threshold model is proposed to decrease the high false-alarm rate of cycle-slips under scintillation conditions, thus avoiding the frequent unnecessary ambiguity resets in BDS precise point positioning (PPP) solution. We use one-year (from 23 March 2015 to 23 March 2016) BDS dataset from Hong Kong Sha Tin (HKST) station (22.4°N, 114.2°E; geomagnetic latitude: 15.4°N) to model the cycle-slip threshold and try to make it suitable for three types of BDS satellites and multiple scintillation levels. The availability of our mitigation strategy is validated by using three months (from 1 September 2015 to 30 November 2015) BDS dataset collected at 10 global navigation satellite system (GNSS) stations in Hong Kong. Positioning results demonstrate that our mitigated BDS PPP can prevent the sudden fluctuations of positioning errors induced by the ionospheric scintillation. Statistical results of BDS PPP experiments show that the mitigated solution can maintain an accuracy of about 0.08 m and 0.10 m in the horizontal and vertical components, respectively. Compared with standard BDS PPP, the accuracy of mitigated PPP can be improved by approximately 24.1%, 38.2%, and 47.9% in the east, north, and up directions, respectively. Our study demonstrates that considering different scintillation levels to establish appropriate cycle-slip threshold model in PPP processing can efficiently mitigate the ionospheric scintillation effects on BDS PPP.


Sign in / Sign up

Export Citation Format

Share Document