scholarly journals Assessment of Multi-Frequency PPP Ambiguity Resolution Using Galileo and BeiDou-3 Signals

2021 ◽  
Vol 13 (23) ◽  
pp. 4746
Author(s):  
Jiang Guo ◽  
Qiyuan Zhang ◽  
Guangcai Li ◽  
Kunlun Zhang

From network RTK to PPP-RTK, it is highly expected that high-precision positioning within a few minutes can be achieved with a sparse reference network. In this study, we investigate a rapid multi-frequency PPP convergence strategy based on Galileo E1/E5a/E6 and BeiDou-3 B1C/B2a/B3I signals, whose unambiguous wide-lane observables can efficiently assist in speeding up narrow-lane ambiguity resolution. Furthermore, frequency-specific biases existing on the third-frequency observables have been observed to slow down multi-frequency PPP-AR convergence. In this study, we partially mitigated their effects by estimating a second satellite clock for the third frequency of signals. We validated this approach with one month of data collected from 22 stations. On average, it took about 18 min for PPP wide-lane ambiguity resolution (PPP-WAR) to converge, while 32 min were required for ambiguity-float PPP. Compared with dual-frequency PPP-AR, which needed nearly 12 min to converge, multi-frequency PPP-AR required 6 min only. Once there were more than 10 satellites involved in PPP, the convergence could be achieved within 3 min on average. Meanwhile, 81% and 62% of multi-frequency PPP-AR solutions converged successfully within 5 and 1 min, respectively. Finally, we carried out a vehicle-borne experiment to validate this approach in a kinematic environment. Owing to frequent cycle slips during the movement of vehicle, it took 14 min for B1C/B2a/B3I and E1/E5a/E6 PPP-AR to obtain reliable positions, and 19 min for those using the other signal combinations B1C/B2a/B2b and E1/E5a/E5b, owning to higher noise. Overall, these results are promising for achieving high-precision PPP positioning globally within a few minutes if multi-frequency biases can be handled well in the data processing.

Sensors ◽  
2020 ◽  
Vol 20 (20) ◽  
pp. 5756
Author(s):  
Xiaofei Xu ◽  
Zhixi Nie ◽  
Zhenjie Wang ◽  
Yuanfan Zhang

Recently, some smartphone manufacturers have subsequently released dual-frequency GNSS smartphones. With dual-frequency observations, the positioning performance is expected to be significantly improved. Cycle-slip detection and correction play an important role in high-precision GNSS positioning, such as precise point positioning (PPP) and real-time kinematic (RTK) positioning. The TurboEdit method utilizes Melbourne–Wübbena (MW) and phase ionospheric residual (PIR) combinations to detect cycle-slips, and it is widely used in the data processing applications for geodetic GNSS receivers. The smartphone pseudorange observations are proved to be much noisier than those collected with geodetic GNSS receivers. Due to the poor pseudorange observation, the MW combination would be difficult to detect small cycle-slips. In addition, some specific cycle-slip combinations, where the ratio of cycle-slip values at different carrier frequencies is close to the frequency ratio, are also difficult to be detected by PIR combination. As a consequence, the traditional TurboEdit method may fail to detect specific small cycle-slip combinations. In this contribution, we develop a modified TurboEdit cycle-slip detection and correction method for dual-frequency smartphone GNSS observations. At first, MW and PIR combinations are adopted to detect cycle-slips by comparing these two combinations with moving-window average values. Then, the epoch-differenced wide-lane combinations are used to estimate the changes of smartphone position and clock bias, and the cycle-slip is identified by checking the largest normalized residual whether it exceeds a predefined threshold value. The process of estimation and cycle-slip identification is implemented in an iterative way until there is no over-limit residual or there is no redundant measurement. At last, the cycle-slip values at each frequency are estimated with the epoch-differenced wide-lane and ionosphere-free combinations, and the least-square ambiguity decorrelation adjustment (LAMBDA) method is adopted to further obtain an integer solution. The proposed method has been verified with 1 Hz dual-frequency smartphone GNSS data. The results show that the modified TurboEdit method can effectively detect and correct even for specific small cycle-slip combinations, e.g., (4, 3), which is difficult to be detected with the traditional TurboEdit method.


2016 ◽  
Vol 69 (6) ◽  
pp. 1310-1324 ◽  
Author(s):  
Wang Shengli ◽  
Deng Jian ◽  
Ou Jikun ◽  
Nie Wenfeng

The correct ambiguity resolution between reference stations is the core issue of the whole Network Real-Time Kinematic (RTK) technology. Aimed at long fixed time and low reliability of the low elevation angle satellite ambiguity resolution during the initialisation of the Network RTK system, a three-step algorithm is proposed in this paper. Firstly, the double difference wide-lane ambiguities are fixed on the basis of the Melbourne-Wubbena (MW) method. Secondly, the double difference L1 carrier phase ambiguities of the high elevation angle satellites are fixed rapidly based on the ionosphere-free combination model. Thirdly, the corresponding ambiguities of the satellites with low elevation angles are solved with restrictions from the double difference tropospheric information, which is obtained from observations of the high elevation angle satellites. Based on this algorithm, an overall scheme of the ambiguity resolution during the initialisation process of the Network RTK system is designed. Results from Global Positioning System (GPS)/Globalnaya Navigatsionnaya Sputnikovaya Sistema (GLONASS) data demonstrate that the three-step algorithm can reduce the ill-posed problems of the observation model effectively. Moreover, the speed and accuracy performances of the ambiguity resolution for the low elevation angle satellites using the proposed algorithm are better than those of the conventional method.


2013 ◽  
Vol 66 (3) ◽  
pp. 335-348 ◽  
Author(s):  
Weiming Tang ◽  
Xiaolin Meng ◽  
Chuang Shi ◽  
Jingnan Liu

The average inter-station distances in most established network Real Time Kinematic (RTK) systems are constrained to around 50 km. A sparse network RTK system with an average inter-station distance of up to 300 km would have many appealing advantages over a conventional one, including a significant reduction in the development and maintenance costs. The first part of this paper introduces the key approaches for sparse network RTK positioning technology. These include long-range reference baseline ambiguity resolution and real-time kinematic ambiguity resolution for the rover receivers. The proposed method for long-range kinematic ambiguity resolution can overcome the network weaknesses through three procedures: application of the interpolated corrections from the sparse network only to wide-lane combination; searching the ambiguities of wide-lane combination; and searching L1 ambiguities with wide-lane combination and ionosphere-free observables. To test these techniques, a network including ten reference stations was created from the Ordnance Survey's Network (OS NetTM) that covers the whole territory of the United Kingdom (UK). The average baseline length of this sparse network is about 300 km. To assess the positioning performance, nine rover stations situated inside and outside the network were also selected from the OS Net™. Finally, the accuracy of interpolated corrections, the positioning accuracy and the initialization time required for precise positioning were estimated and analysed. From the observed performance of each rover receiver, and the accuracy of interpolated network corrections, it can be concluded that it is feasible to use a sparse reference station network with an average inter-station distance up to 300 km for achieving similar performance to traditional network RTK positioning. The proposed approach can provide more cost-efficient use of network RTK (NRTK) positioning for engineering and environmental applications that are currently being delivered by traditional network RTK positioning technology.


2021 ◽  
Vol 95 (4) ◽  
Author(s):  
Bingbing Duan ◽  
Urs Hugentobler ◽  
Inga Selmke ◽  
Ningbo Wang

AbstractAmbiguity resolution of a single receiver is becoming more and more popular for precise GNSS (Global Navigation Satellite System) applications. To serve such an approach, dedicated satellite orbit, clock and bias products are needed. However, we need to be sure whether products based on specific frequencies and signals can be used when processing measurements of other frequencies and signals. For instance, for Galileo E5a frequency, some receivers track only the pilot signal (C5Q) while some track only the pilot-data signal (C5X). We cannot compute the differences between C5Q and C5X directly since these two signals are not tracked concurrently by any common receiver. As code measurements contribute equally as phase in the Melbourne-Wuebbena (MelWub) linear combination it is important to investigate whether C5Q and C5X can be mixed in a network to compute a common satellite MelWub bias product. By forming two network clusters tracking Q and X signals, respectively, we confirm that GPS C5Q and C5X signals cannot be mixed together. Because the bias differences between GPS C5Q and C5X can be more than half of one wide-lane cycle. Whereas, mixing of C5Q and C5X signals for Galileo satellites is possible. The RMS of satellite MelWub bias differences between Q and X cluster is about 0.01 wide-lane cycles for both E1/E5a and E1/E5b frequencies. Furthermore, we develop procedures to compute satellite integer clock and narrow-lane bias products using individual dual-frequency types. Same as the finding from previous studies, GPS satellite clock differences between L1/L2 and L1/L5 estimates exist and show a periodical behavior, with a peak-to-peak amplitude of 0.7 ns after removing the daily mean difference of each satellite. For Galileo satellites, the maximum clock difference between E1/E5a and E1/E5b estimates after removing the mean value is 0.04 ns and the mean RMS of differences is 0.015 ns. This is at the same level as the noise of the carrier phase measurement in the ionosphere-free linear combination. Finally, we introduce all the estimated GPS and Galileo satellite products into PPP-AR (precise point positioning, ambiguity resolution) and Sentinel-3A satellite orbit determination. Ambiguity fixed solutions show clear improvement over float solutions. The repeatability of five ground-station coordinates show an improvement of more than 30% in the east direction when using both GPS and Galileo products. The Sentinel-3A satellite tracks only GPS L1/L2 measurements. The standard deviation (STD) of satellite laser ranging (SLR) residuals is reduced by about 10% when fixing ambiguity parameters to integer values.


Sensors ◽  
2019 ◽  
Vol 19 (16) ◽  
pp. 3500 ◽  
Author(s):  
Fu Zheng ◽  
Xiaopeng Gong ◽  
Yidong Lou ◽  
Shengfeng Gu ◽  
Guifei Jing ◽  
...  

Global Navigation Satellite System pseudorange biases are of great importance for precise positioning, timing and ionospheric modeling. The existence of BeiDou Navigation Satellite System (BDS) receiver-related pseudorange biases will lead to the loss of precision in the BDS satellite clock, differential code bias estimation, and other precise applications, especially when inhomogeneous receivers are used. In order to improve the performance of BDS precise applications, two ionosphere-free and geometry-free combinations and ionosphere-free pseudorange residuals are proposed to calibrate the raw receiver-related pseudorange biases of BDS on each frequency. Then, the BDS triple-frequency receiver-related pseudorange biases of seven different manufacturers and twelve receiver models are calibrated. Finally, the effects of receiver-related pseudorange bias are analyzed by BDS single-frequency single point positioning (SPP), single- and dual-frequency precise point positioning (PPP), wide-lane uncalibrated phase delay (UPD) estimation, and ambiguity resolution, respectively. The results show that the BDS SPP performance can be significantly improved by correcting the receiver-related pseudorange biases and the accuracy improvement is about 20% on average. Moreover, the accuracy of single- and dual-frequency PPP is improved mainly due to a faster convergence when the receiver-related pseudorange biases are corrected. On the other hand, the consistency of wide-lane UPD among different stations is improved significantly and the standard deviation of wide-lane UPD residuals is decreased from 0.195 to 0.061 cycles. The average success rate of wide-lane ambiguity resolution is improved about 42.10%.


Author(s):  
M. Elsobeiey

Typically, differential carrier-phase-based methods have been used in positioning applications that require high accuracy. The main advantage of differential methods is solving the carrier-phase ambiguities and obtain millimetre-level accuracy carrier-phase measurements. Recent studies showed that it is possible to fix the un-differenced carrier-phase ambiguities into integers which is well-known as un-differenced carrier-phase ambiguity resolution. Unfortunately, the IGS neglects satellite hardware delay during satellite clock corrections estimation process. In case of differential methods, however, this will not affect the user as all common errors between the reference and rover receivers will be cancelled out by. Point positioning, on the other hand, will be affected by neglecting satellite hardware delays as those hardware delays will be lumped into the carrier-phase ambiguities destroying its integer nature. To solve this problem, satellite clock corrections must be estimated based on clock correction for each observable bases. The user, on the other hand, can form the ionosphere-free linear combination and divide and fix its two components, namely widelane and narrowlane. If both ambiguities are successfully fixed, few millimetres level of accuracy measurements are then obtained. In this paper, one month (December, 2013) of GPS data is used to study the receiver widelane bias, its behaviour over time, and receiver dependency are provided. It is shown that the receiver widelane bias is receiver dependent, stable over time for high-grade geodetic receivers. These results are expected to have a great impact on precise point positioning (PPP) conversion time and PPP carrierphase ambiguity resolution.


2017 ◽  
Vol 2017 ◽  
pp. 1-11
Author(s):  
Fei Liu ◽  
Yang Gao

With the availability of the third civil signal in the Global Positioning System, triple-frequency Precise Point Positioning ambiguity resolution methods have drawn increasing attention due to significantly reduced convergence time. However, the corresponding triple-frequency based precise clock products are not widely available and adopted by applications. Currently, most precise products are generated based on ionosphere-free combination of dual-frequency L1/L2 signals, which however are not consistent with the triple-frequency ionosphere-free carrier-phase measurements, resulting in inaccurate positioning and unstable float ambiguities. In this study, a GPS triple-frequency PPP ambiguity resolution method is developed using the widely used dual-frequency based clock products. In this method, the interfrequency clock biases between the triple-frequency and dual-frequency ionosphere-free carrier-phase measurements are first estimated and then applied to triple-frequency ionosphere-free carrier-phase measurements to obtain stable float ambiguities. After this, the wide-lane L2/L5 and wide-lane L1/L2 integer property of ambiguities are recovered by estimating the satellite fractional cycle biases. A test using a sparse network is conducted to verify the effectiveness of the method. The results show that the ambiguity resolution can be achieved in minutes even tens of seconds and the positioning accuracy is in decimeter level.


2020 ◽  
Author(s):  
Jiaxin Huang ◽  
Xin Li ◽  
Hongbo Lv ◽  
Yun Xiong

<p>The performance of precise point positioning (PPP) can be significantly improved with multi-GNSS observations, but it still needs more than ten minutes to obtain positioning results at centimeter-level accuracy. In order to shorten the initialization time and improve the positioning accuracy, we develop a multi-GNSS (GPS + GLONASS + Galileo + BDS) PPP method augmented by precise atmospheric corrections to achieve instantaneous ambiguity resolution (IAR). In the proposed method, regional augmentation corrections including precise atmospheric corrections and satellite uncalibrated phase delays (UPDs) are derived from PPP fixed solutions at reference network and provided to user stations for correcting the dual-frequency raw observations. Then the regional augmentation corrections from nearby reference stations are interpolated on the client through a modified linear combination method (MLCM). With the corrected observations, IAR can be achieved with centimeter-level accuracy. This method is validated experimentally with Hong Kong CORS network, and the results indicate that multi-GNSS fusion can improve the performance in terms of both positioning accuracy and reliability of AR. The percentage of IAR for multi-GNSS solutions is up to 99.7%, while the percentage of GPS-only solutions is 88.7% when the cut-off elevation angle is 10°. The benefit of multi-GNSS fusion is more significant with high cut-off elevation angle. The percentage of IAR can be still above 98.4% for multi-GNSS solutions while the result of GPS-only solutions is below 43.5% when the cut-off elevation angle reaches 30°.  The positioning accuracy of multi-GNSS solutions is improved by 30.0% on the horizontal direction (0.7 cm) and 17.1% on the vertical direction (2.9 cm) compared to GPS-only solutions.</p>


ENTOMON ◽  
2018 ◽  
Vol 43 (4) ◽  
pp. 257-262
Author(s):  
Atanu Seni ◽  
Bhimasen Naik

Experiments were carried out to assess some insecticide modules against major insect pests of rice. Each module consists of a basal application of carbofuran 3G @ 1 kg a.i ha-1 at 20 DAT and Rynaxypyr 20 SC @ 30 g a.i ha-1 at 45 DAT except untreated control. All modules differ with each other only in third treatment which was applied in 65 DAT. The third treatment includes: Imidacloprid 17.8 SL @ 27 g a.i ha-1, Pymetrozine 50 WG @ 150 g a.i ha-1, Triflumezopyrim 106 SC @ 27 g a.i ha-1, Buprofezin 25 SC @ 250 g a.i ha-1; Glamore (Imidacloprid 40+Ethiprole 40% w/w) 80 WG @ 100 g a.i. ha-1, Thiacloprid 24 SC @ 60 g a.i ha-1, Azadirachtin 0.03 EC @ 8 g a.i ha-1, Dinotefuran 20 SG@ 40 g a.i ha-1 and untreated control. All the treated plots recorded significantly lower percent of dead heart, white ear- head caused by stem borer and silver shoot caused by gall midge. Module with Pymetrozine 50 WG @ 150 g a.i ha-1 treated plot recorded significantly higher per cent reduction of plant hoppers (>80% over untreated control) and produced higher grain yield (50.75 qha-1) than the other modules. Among the different treated modules the maximum number of spiders was found in Azadirachtin 0.03 EC @ 8 g a.i ha-1 treated module plot followed by other treatments.


Author(s):  
Daniel Martin Feige

Der Beitrag widmet sich der Frage historischer Folgeverhältnisse in der Kunst. Gegenüber dem Gedanken, dass es ein ursprüngliches Werk in der Reihe von Werken gibt, das späteren Werken seinen Sinn gibt, schlägt der Text vor, das Verhältnis umgekehrt zu denken: Im Lichte späterer Werke wird der Sinn früherer Werke neu ausgehandelt. Dazu geht der Text in drei Schritten vor. Im ersten Teil formuliert er unter der Überschrift ›Form‹ in kritischer Abgrenzung zu Danto und Eco mit Adorno den Gedanken, dass Kunstwerke eigensinnig konstituierte Gegenstände sind. Die im Gedanken der Neuverhandlung früherer Werke im Lichte späterer Werke vorausgesetzte Unbestimmtheit des Sinns von Kunstwerken wird im zweiten Teil unter dem Schlagwort ›Zeitlichkeit‹ anhand des Paradigmas der Improvisation erörtert. Der dritte und letzte Teil wendet diese improvisatorische Logik unter dem Label ›Neuaushandlung‹ dann dezidiert auf das Verhältnis von Vorbild und Nachbild an. The article proposes a new understanding of historical succession in the realm of art. In contrast to the idea that there is an original work in the series of works that gives meaning to the works that come later, the text proposes to think it exactly the other way round: in the light of later works, the meanings of earlier works are renegotiated. The text proceeds in three steps to develop this idea. Under the heading ›Form‹ it develops in the first part a critical reading of Danto’s and Eco’s notion of the constitution of the artworks and argues with Adorno that each powerful work develops its own language. In the second part, the vagueness of the meaning of works of art presupposed in the idea of renegotiating earlier works in the light of later works is discussed under the term ›Temporality‹ in terms of the logic of improvisation. The third and final part uses this improvisational logic under the label ›Renegotiation‹ to understand the relationship between model and afterimage in the realm of art.


Sign in / Sign up

Export Citation Format

Share Document