charge dependence
Recently Published Documents


TOTAL DOCUMENTS

189
(FIVE YEARS 10)

H-INDEX

32
(FIVE YEARS 2)

2021 ◽  
Vol 127 (19) ◽  
Author(s):  
Simone Benaglia ◽  
Manuel R. Uhlig ◽  
Jose Hernández-Muñoz ◽  
Enrique Chacón ◽  
Pedro Tarazona ◽  
...  

2020 ◽  
Vol 59 (SP) ◽  
pp. SPPE02
Author(s):  
Jun Takarada ◽  
Yifu Tang ◽  
Yoshihiko Nishizawa ◽  
Masamichi Ando ◽  
Yoshiro Tajitsu

Author(s):  
Bogusław Włoch ◽  
Kazimierz Bodek ◽  
Izabela Ciepał ◽  
Mohammad Eslami-Kalantari ◽  
Jacek Golak ◽  
...  

Deuteron breakup reactions are basic laboratories for testing nuclear force models. Recent improvements in the data analysis allow for direct identification of neutrons in the BINA detection setup. This opens up the opportunity to study new aspects of few-nucleon system dynamics like charge dependence of nuclear force or Coulomb interaction. In this paper we determine regions along the kinematical curves where differential cross section of deuteron-proton breakup reactions can be measured by the proton-neutron and proton-proton coincidences simultaneously. %In this paper we determine regions along the kinematical curves where differential cross section of $^1$H$(d,pp)n$ and $^1$H$(d,pn)p$ breakup reactions overlap. This is particularly useful for validation of the neutron detection technique.


2019 ◽  
Vol 27 (2) ◽  
pp. 9-16
Author(s):  
E. V. Reznikov ◽  
V. V. Skalozub

The one-photon vertex in presence of strong magnetic field and finite temperature in dense medium is computed, its properties are investigated. Calculations are performed in analytical forms for two cases: at zero temperature and at high temperature. The integral form of the vertex is obtained for a general case. The tensor function is represented as the sum of Feynmanʼs one-loop diagrams. The induced charge dependence on chemical potential, temperature, and strong magnetic field is investigated in detail. The induced potential is calculated for the case of the infinite medium plate.


2019 ◽  
Vol 12 (7) ◽  
pp. 3659-3671 ◽  
Author(s):  
Christian Tauber ◽  
Sophia Brilke ◽  
Peter Josef Wlasits ◽  
Paulus Salomon Bauer ◽  
Gerald Köberl ◽  
...  

Abstract. In this study the impact of humidity on heterogeneous nucleation of n-butanol onto hygroscopic and nonabsorbent charged and neutral particles was investigated using a fast expansion chamber and commercial continuous flow type condensation particle counters (CPCs). More specifically, we measured the activation probability of sodium chloride (NaCl) and silver (Ag) nanoparticles by using n-butanol as condensing liquid with the size analyzing nuclei counter (SANC). In addition, the cutoff diameters of regular butanol-based CPCs for both seed materials under different charging states were measured and compared to SANC results. Our findings reveal a strong humidity dependence of NaCl particles in the sub-10 nm size range since the activation of sodium chloride seeds is enhanced with increasing relative humidity. In addition, negatively charged NaCl particles with a diameter below 3.5 nm reveal a charge-enhanced activation. For Ag seeds this humidity and charge dependence was not observed, underlining the importance of molecular interactions between seed and vapor molecules. Consequently, the cutoff diameter of a butanol-based CPC can be reduced significantly by increasing the relative humidity. This finding suggests that cutoff diameters of butanol CPCs under ambient conditions are likely smaller than corresponding cutoff diameters measured under clean (dry) laboratory conditions. At the same time, we caution that the humidity dependence may lead to wrong interpretations if the aerosol composition is not known.


Author(s):  
Eike Caldeweyher ◽  
Sebastian Ehlert ◽  
Andreas Hansen ◽  
Hagen Neugebauer ◽  
Sebastian Spicher ◽  
...  

The D4 model is presented for the accurate computation of London dispersion interactions in density functional theory approximations (DFT-D4) and generally for atomistic modeling methods. In this successor to the DFT-D3 model, the atomic coordination-dependent dipole polarizabilities are scaled based on atomic partial charges which can be taken from various sources. For this purpose, a new charge-dependent parameter-economic scaling function is designed. Classical charges are obtained from an atomic electronegativity equilibration procedure for which efficient analytical derivatives are developed. A numerical Casimir-Polder integration of the atom-in-molecule dynamic polarizabilities yields charge- and geometry-dependent dipole-dipole dispersion coefficients. Similar to the D3 model, the dynamic polarizabilities are pre-computed by time-dependent DFT and elements up to radon are covered. For a benchmark set of 1225 dispersion coefficients, the D4 model achieves an unprecedented accuracy with a mean relative deviation of 3.8% compared to 4.7% for D3. In addition to the two-body part, three-body effects are described by an Axilrod-Teller-Muto term. A common many-body dispersion expansion was extensively tested and an energy correction based on D4 polarizabilities is found to be advantageous for some larger systems. Becke-Johnson-type damping parameters for DFT-D4 are determined for more than 60 common functionals. For various energy benchmark sets DFT-D4 slightly outperforms DFT-D3. Especially for metal containing systems, the introduced charge dependence improves thermochemical properties. We suggest (DFT-)D4 as a physically improved and more sophisticated dispersion model in place of DFT-D3 for DFT calculations as well as for other low-cost approaches like semi-empirical models.<br><br>


2019 ◽  
Author(s):  
Eike Caldeweyher ◽  
Sebastian Ehlert ◽  
Andreas Hansen ◽  
Hagen Neugebauer ◽  
Sebastian Spicher ◽  
...  

The D4 model is presented for the accurate computation of London dispersion interactions in density functional theory approximations (DFT-D4) and generally for atomistic modeling methods. In this successor to the DFT-D3 model, the atomic coordination-dependent dipole polarizabilities are scaled based on atomic partial charges which can be taken from various sources. For this purpose, a new charge-dependent parameter-economic scaling function is designed. Classical charges are obtained from an atomic electronegativity equilibration procedure for which efficient analytical derivatives are developed. A numerical Casimir-Polder integration of the atom-in-molecule dynamic polarizabilities yields charge- and geometry-dependent dipole-dipole dispersion coefficients. Similar to the D3 model, the dynamic polarizabilities are pre-computed by time-dependent DFT and elements up to radon are covered. For a benchmark set of 1225 dispersion coefficients, the D4 model achieves an unprecedented accuracy with a mean relative deviation of 3.8% compared to 4.7% for D3. In addition to the two-body part, three-body effects are described by an Axilrod-Teller-Muto term. A common many-body dispersion expansion was extensively tested and an energy correction based on D4 polarizabilities is found to be advantageous for some larger systems. Becke-Johnson-type damping parameters for DFT-D4 are determined for more than 60 common functionals. For various energy benchmark sets DFT-D4 slightly outperforms DFT-D3. Especially for metal containing systems, the introduced charge dependence improves thermochemical properties. We suggest (DFT-)D4 as a physically improved and more sophisticated dispersion model in place of DFT-D3 for DFT calculations as well as for other low-cost approaches like semi-empirical models.<br><br>


RSC Advances ◽  
2019 ◽  
Vol 9 (35) ◽  
pp. 20402-20414 ◽  
Author(s):  
Carlo Guardiani ◽  
William A. T. Gibby ◽  
Miraslau L. Barabash ◽  
Dmitry G. Luchinsky ◽  
Peter V. E. McClintock

Increase of graphene pore charge determines decrease of PMF barrier that turns into well: current increases, reaches plateau and declines.


Sign in / Sign up

Export Citation Format

Share Document