scholarly journals Effect of Base Conditions in One-Dimensional Numerical Simulation of Seismic Site Response: A Technical Note for Best Practice

GeoHazards ◽  
2021 ◽  
Vol 2 (4) ◽  
pp. 430-441
Author(s):  
Gaetano Falcone ◽  
Giuseppe Naso ◽  
Federico Mori ◽  
Amerigo Mendicelli ◽  
Gianluca Acunzo ◽  
...  

The effects induced by the choice of numerical base conditions for evaluating local seismic response are investigated in this technical note, aiming to provide guidelines for professional applications. A numerical modelling of the seismic site response is presented, assuming a one-dimensional scheme. At first, with reference to the case of a homogeneous soil layer overlying a half-space, two different types of numerical base conditions, named rigid and elastic, were adopted to analyse the seismic site response. Then, geological setting, physical and mechanical properties were selected from Italian case studies. In detail, the following stratigraphic successions were considered: shallow layer 1 (shear wave velocity, VS, equal to 400 m/s), layer 2 (VS equal to 600 m/s) and layer 3 (VS equal to 800 m/s). In addition, real signals were retrieved from the web site of the Italian accelerometric strong motion network. Rigid and elastic base conditions were adopted to estimate the ground motion modifications of the reference signals. The results are presented in terms of amplification factors (i.e., ratio of integral quantities referred to free-field and reference response spectra) and are compared between the adopted numerical models.

2016 ◽  
Vol 53 (9) ◽  
pp. 1363-1375 ◽  
Author(s):  
Behrang Dadfar ◽  
M. Hesham El Naggar ◽  
Miroslav Nastev

Seismic site response of discontinuous permafrost is discussed. The presence of frozen ground in soil deposits can significantly affect their dynamic response due to stiffer conditions characterized by higher shear-wave velocities compared to unfrozen soils. Both experimental and numerical investigations were conducted to examine the problem. The experimental program included a series of 1g shaking table tests on small-scale models. Nonlinear numerical analyses were performed employing FLAC software. The numerical model was verified using the obtained experimental results. Parametric simulations were then conducted using the verified model to study variations of the free-field spectral accelerations (on top of the frozen and unfrozen soil blocks) with the scheme of frozen–unfrozen soil, and to determine the key parameters and their effects on seismic site response. Results show that spectral accelerations were generally higher in frozen soils than in unfrozen ones. It was found that the shear-wave velocity of the frozen soil as well as the assumed geometry of the blocks and their spacing have a significant impact on the site response.


1999 ◽  
Vol 36 (2) ◽  
pp. 195-209 ◽  
Author(s):  
John F Cassidy ◽  
Garry C Rogers

Three-component, digital recordings of two recent moderate earthquakes provide valuable new insight into the response to seismic shaking in the greater Vancouver area, particularly on the Fraser River delta. The 1996 M = 5.1 Duvall, Washington, earthquake (180 km southeast of Vancouver) triggered strong-motion seismographs at seven sites and the 1997 M = 4.3 Georgia Strait earthquake (37 km west of Vancouver) triggered instruments at 13 sites in the greater Vancouver area. The latter data set is especially important because it contains the first three-component recordings made on bedrock in greater Vancouver. Both data sets represent weak ground motion, with peak horizontal accelerations of 0.5-1.5% gravity (g) for the Duvall earthquake, and 0.2-2.4% g for the Georgia Strait earthquake. Using the method of spectral ratios, we estimate the site response for each of the strong-motion instrument soil sites. On the Fraser River delta amplification is observed over a relatively narrow frequency range of 1.5-4 Hz (0.25-0.67 s period), with peak amplification of 4-10 (relative to competent bedrock) for the thick soil delta centre sites, and about 7-11 for the delta edge sites. Relative to firm soil, the peak amplification ranges from 2 to 5 for the thick soil delta centre sites, and 2 to 6 for the delta edge sites. At higher frequencies, little or no amplification, and in many cases slight attenuation, is observed.Key words: seismic site response, Fraser delta, earthquakes.


Author(s):  
Tam Larkin ◽  
John Marsh

This paper presents the results of computer studies of the seismic site response of two dimensional alluvial valleys with a variety of geometries and material properties. The alluvial material is modelled as a nonlinear hysteretic solid and results are presented to illustrate the effect of material nonlinearity on surface ground response. Comparative studies with one dimensional analyses are presented and conclusions drawn as to ground conditions that are appropriate to one dimensional site analyses.


2021 ◽  
Author(s):  
Gaetano Falcone ◽  
Gianluca Acunzo ◽  
Amerigo Mendicelli ◽  
Federico Mori ◽  
Giuseppe Naso ◽  
...  

<p>Estimation of site effects over large areas is a key-issue for land management and emergency system planning in a risk mitigation perspective. In general, site-conditions are retrieved from available global datasets and the ground-shaking estimation is based on ground motion prediction equations.</p><p>An advanced procedure to estimate site effects over large areas is here proposed with reference to the Italian territory. Site-condition were defined for homogenous morpho-geological areas in accordance to the borehole logs and the geophysical data archived in the Italian database for seismic microzonation (https://www.webms.it/). Ground motion modifications were determined by means of about 30 milion of one-dimensional numerical simulations of local seismic site response. Correlations between amplification factors (i.e. the ratio between free-field and outcrop response spectra), AF, and site-condition (i.e. harmonic mean of the shear wave velocity in the upper 30 m of the deposit, V<sub>S30</sub>) were determined for each morpho-geological homogeneous area depending on the reference seismic intensity (i.e. referred to the outcropping stiff rock characterised by V<sub>S30</sub> ≥ 800 m/s). The AF-V<sub>S30</sub> correlations were proved to satisfactory forecast the site effects when compared with the results of site specific estimation of local seismic site response.</p>


2019 ◽  
Vol 36 (1) ◽  
pp. 111-137 ◽  
Author(s):  
Boqin Xu ◽  
Ellen M Rathje ◽  
Youssef Hashash ◽  
Jonathan Stewart ◽  
Kenneth Campbell ◽  
...  

Small-strain damping profiles developed from geotechnical laboratory testing have been observed to be smaller than the damping inferred from the observed site amplification from downhole array recordings. This study investigates the high-frequency spectral decay parameter ( κ0) of earthquake motions from soil sites and evaluates the use of κ0 to constrain the small-strain damping profile for one-dimensional site response analysis. Using data from 51 sites from the Kiban-Kyoshin strong motion network (KiK-net) array in Japan and six sites from California, a relationship was developed between κ0 at the surface and both the 30-m time-averaged shear wave velocity ( V s30) and the depth to the 2.5 km/s shear wave velocity horizon ( Z2.5). This relationship demonstrates that κ0 increases with decreasing V s30 and increasing Z2.5. An approach is developed that uses this relationship to establish a target κ0 from which to constrain the small-strain damping profile used in one-dimensional site response analysis. This approach to develop κ0-consistent damping profiles for site response analysis is demonstrated through a recent site amplification study of Central and Eastern North America for the NGA-East project.


Author(s):  
Mohammad Adampira ◽  
Mehdi Derakhshandi ◽  
Abbas Ghalandarzadeh ◽  
Hossein Javaheri Koupaei

Author(s):  
Christopher R McGann ◽  
Brendon Bradley ◽  
Liam Wotherspoon ◽  
Robin Lee

Plane strain (2D) finite element models are used to examine factors contributing to basin effects observed for multiple seismic events at sites in the Thorndon basin of Wellington, New Zealand. The models consider linear elastic soil and rock response when subjected to vertically-propagating shear waves. Depth-dependent shear wave velocities are considered in the soil layers, and the effects of random variations of soil velocity within layers are modelled. Various rock shear wave velocity configurations are considered to evaluate their effect on the modelled surficial response. It is shown that these simple 2D models are able to capture basin reverberations and compare more favourably to observations from strong motion recordings than conventional 1D site response models. It is also shown that consideration of a horizontal impedance contrast across the Wellington Fault affects spectral response and amplification at longer periods, suggesting the importance of this feature in future ground motion modelling studies in the Wellington region.


2019 ◽  
Vol 35 (2) ◽  
pp. 883-905 ◽  
Author(s):  
Marco Pilz ◽  
Fabrice Cotton

The one-dimensional (1-D) approach is still the dominant method to incorporate site effects in engineering applications. To bridge the 1-D to multidimensional site response analysis, we develop quantitative criteria and a reproducible method to identify KiK-net sites with significant deviations from 1-D behavior. We found that 158 out of 354 show two-dimensional (2-D) and three-dimensional (3-D) effects, extending the resonance toward shorter periods at which 2-D or 3-D site effects exceed those of the classic 1-D configurations and imposing an additional amplification to that caused by the impedance contrast alone. Such 2-D and 3-D effects go along with a large within-station ground motion variability. Remarkably, these effects are found to be more pronounced for small impedance contrasts. While it is hardly possible to identify common features in ground motion behavior for stations with similar topography typologies, it is not over-conservative to apply a safety factor to account for 2-D and 3-D site effects in ground motion modeling.


Sign in / Sign up

Export Citation Format

Share Document