scholarly journals Rare Modifier Variants Alter the Severity of Cardiovascular Disease in Pseudoxanthoma Elasticum: Identification of Novel Candidate Modifier Genes and Disease Pathways Through Mixture of Effects Analysis

Author(s):  
Eva Y. G. De Vilder ◽  
Ludovic Martin ◽  
Georges Lefthériotis ◽  
Paul Coucke ◽  
Filip Van Nieuwerburgh ◽  
...  

Introduction: Pseudoxanthoma elasticum (PXE), an ectopic mineralization disorder caused by pathogenic ABCC6 variants, is characterized by skin, ocular and cardiovascular (CV) symptoms. Due to striking phenotypic variability without genotype-phenotype correlations, modifier genes are thought to play a role in disease variability. In this study, we evaluated the collective modifying effect of rare variants on the cardiovascular phenotype of PXE.Materials and Methods: Mixed effects of rare variants were assessed by Whole Exome Sequencing in 11 PXE patients with an extreme CV phenotype (mild/severe). Statistical analysis (SKAT-O and C-alpha testing) was performed to identify new modifier genes for the CV PXE phenotype and enrichment analysis for genes significantly associated with the severe cohort was used to evaluate pathway and gene ontology features.Results Respectively 16 (SKAT-O) and 74 (C-alpha) genes were significantly associated to the severe cohort. Top significant genes could be stratified in 3 groups–calcium homeostasis, association with vascular disease and induction of apoptosis. Comparative analysis of both analyses led to prioritization of four genes (NLRP1, SELE, TRPV1, and CSF1R), all signaling through IL-1B.Conclusion This study explored for the first time the cumulative effect of rare variants on the severity of cardiovascular disease in PXE, leading to a panel of novel candidate modifier genes and disease pathways. Though further validation is essential, this panel may aid in risk stratification and genetic counseling of PXE patients and will help to gain new insights in the PXE pathophysiology.

2021 ◽  
Vol 12 ◽  
Author(s):  
Xiaojun Chen ◽  
Fatao Liu ◽  
Zin Mar Aung ◽  
Yan Zhang ◽  
Gang Chai

Hemifacial microsomia (HFM) is a rare congenital disease characterized by a spectrum of craniomaxillofacial malformations, including unilateral hypoplasia of the mandible and surrounding structures. Genetic predisposition for HFM is evident but the causative genes have not been fully understood. Thus, in the present study, we used whole-exome sequencing to screen 52 patients with HFM for rare germline mutations. We revealed 3,341 rare germline mutations in this patient cohort, including those in 13 genes previously shown to be associated with HFM. Among these HFM-related genes, NID2 was most frequently mutated (in 3/52 patients). PED4DIP, which has not been previously associated with HFM, exhibited rare variants most frequently (in 7/52 patients). Pathway enrichment analysis of genes that were mutated in >2 patients predicted the “laminin interactions” pathway to be most significantly disrupted, predominantly by mutations in ITGB4, NID2, or LAMA5. In summary, this study is the first to identify rare germline mutations in HFM. The likely disruptions in the signaling pathways due to the mutations reported here may be considered potential causes of HFM.


2019 ◽  
Vol 22 (6) ◽  
pp. 411-420 ◽  
Author(s):  
Xian-Jun Wu ◽  
Xin-Bin Zhou ◽  
Chen Chen ◽  
Wei Mao

Aim and Objective: Cardiovascular disease is a serious threat to human health because of its high mortality and morbidity rates. At present, there is no effective treatment. In Southeast Asia, traditional Chinese medicine is widely used in the treatment of cardiovascular diseases. Quercetin is a flavonoid extract of Ginkgo biloba leaves. Basic experiments and clinical studies have shown that quercetin has a significant effect on the treatment of cardiovascular diseases. However, its precise mechanism is still unclear. Therefore, it is necessary to exploit the network pharmacological potential effects of quercetin on cardiovascular disease. Materials and Methods: In the present study, a novel network pharmacology strategy based on pharmacokinetic filtering, target fishing, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis, compound-target-pathway network structured was performed to explore the anti- cardiovascular disease mechanism of quercetin. Results:: The outcomes showed that quercetin possesses favorable pharmacokinetic profiles, which have interactions with 47 cardiovascular disease-related targets and 12 KEGG signaling pathways to provide potential synergistic therapeutic effects. Following the construction of Compound-Target-Pathway (C-T-P) network, and the network topological feature calculation, we obtained top 10 core genes in this network which were AKT1, IL1B, TNF, IL6, JUN, CCL2, FOS, VEGFA, CXCL8, and ICAM1. KEGG pathway enrichment analysis. These indicated that quercetin produced the therapeutic effects against cardiovascular disease by systemically and holistically regulating many signaling pathways, including Fluid shear stress and atherosclerosis, AGE-RAGE signaling pathway in diabetic complications, TNF signaling pathway, MAPK signaling pathway, IL-17 signaling pathway and PI3K-Akt signaling pathway.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Sang Jin Kim ◽  
◽  
Kemal Sonmez ◽  
Ryan Swan ◽  
J. Peter Campbell ◽  
...  

AbstractRetinopathy of prematurity (ROP) is a vasoproliferative retinal disease affecting premature infants. In addition to prematurity itself and oxygen treatment, genetic factors have been suggested to predispose to ROP. We aimed to identify potentially pathogenic genes and biological pathways associated with ROP by analyzing variants from whole exome sequencing (WES) data of premature infants. As part of a multicenter ROP cohort study, 100 non-Hispanic Caucasian preterm infants enriched in phenotypic extremes were subjected to WES. Gene-based testing was done on coding nonsynonymous variants. Genes showing enrichment of qualifying variants in severe ROP compared to mild or no ROP from gene-based tests with adjustment for gestational age and birth weight were selected for gene set enrichment analysis (GSEA). Mean BW of included infants with pre-plus, type-1 or type 2 ROP including aggressive posterior ROP (n = 58) and mild or no ROP (n = 42) were 744 g and 995 g, respectively. No single genes reached genome-wide significance that could account for a severe phenotype. GSEA identified two significantly associated pathways (smooth endoplasmic reticulum and vitamin C metabolism) after correction for multiple tests. WES of premature infants revealed potential pathways that may be important in the pathogenesis of ROP and in further genetic studies.


Genes ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 430
Author(s):  
Steven R. Bentley ◽  
Ilaria Guella ◽  
Holly E. Sherman ◽  
Hannah M. Neuendorf ◽  
Alex M. Sykes ◽  
...  

Parkinson’s disease (PD) is typically sporadic; however, multi-incident families provide a powerful platform to discover novel genetic forms of disease. Their identification supports deciphering molecular processes leading to disease and may inform of new therapeutic targets. The LRRK2 p.G2019S mutation causes PD in 42.5–68% of carriers by the age of 80 years. We hypothesise similarly intermediately penetrant mutations may present in multi-incident families with a generally strong family history of disease. We have analysed six multiplex families for missense variants using whole exome sequencing to find 32 rare heterozygous mutations shared amongst affected members. Included in these mutations was the KCNJ15 p.R28C variant, identified in five affected members of the same family, two elderly unaffected members of the same family, and two unrelated PD cases. Additionally, the SIPA1L1 p.R236Q variant was identified in three related affected members and an unrelated familial case. While the evidence presented here is not sufficient to assign causality to these rare variants, it does provide novel candidates for hypothesis testing in other modestly sized families with a strong family history. Future analysis will include characterisation of functional consequences and assessment of carriers in other familial cases.


2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Anna Ka-Yee Kwong ◽  
Mandy Ho-Yin Tsang ◽  
Jasmine Lee-Fong Fung ◽  
Christopher Chun-Yu Mak ◽  
Kate Lok-San Chan ◽  
...  

Abstract Background Movement disorders are a group of heterogeneous neurological diseases including hyperkinetic disorders with unwanted excess movements and hypokinetic disorders with reduction in the degree of movements. The objective of our study is to investigate the genetic etiology of a cohort of paediatric patients with movement disorders by whole exome sequencing and to review the potential treatment implications after a genetic diagnosis. Results We studied a cohort of 31 patients who have paediatric-onset movement disorders with unrevealing etiologies. Whole exome sequencing was performed and rare variants were interrogated for pathogenicity. Genetic diagnoses have been confirmed in 10 patients with disease-causing variants in CTNNB1, SPAST, ATP1A3, PURA, SLC2A1, KMT2B, ACTB, GNAO1 and SPG11. 80% (8/10) of patients with genetic diagnosis have potential treatment implications and treatments have been offered to them. One patient with KMT2B dystonia showed clinical improvement with decrease in dystonia after receiving globus pallidus interna deep brain stimulation. Conclusions A diagnostic yield of 32% (10/31) was reported in our cohort and this allows a better prediction of prognosis and contributes to a more effective clinical management. The study highlights the potential of implementing precision medicine in the patients.


2020 ◽  
Vol 22 (1) ◽  
pp. 278
Author(s):  
Jianjian Sun ◽  
Peilu She ◽  
Xu Liu ◽  
Bangjun Gao ◽  
Daqin Jin ◽  
...  

Pseudoxanthoma elasticum (PXE), caused by ABCC6/MRP6 mutation, is a heritable multisystem disorder in humans. The progressive clinical manifestations of PXE are accompanied by ectopic mineralization in various connective tissues. However, the pathomechanisms underlying the PXE multisystem disorder remains obscure, and effective treatment is currently available. In this study, we generated zebrafish abcc6a mutants using the transcription activator-like effector nuclease (TALEN) technique. In young adult zebrafish, abcc6a is expressed in the eyes, heart, intestine, and other tissues. abcc6a mutants exhibit extensive calcification in the ocular sclera and Bruch’s membrane, recapitulating part of the PXE manifestations. Mutations in abcc6a upregulate extracellular matrix (ECM) genes, leading to fibrotic heart with reduced cardiomyocyte number. We found that abcc6a mutation reduced levels of both vitamin K and pyrophosphate (PPi) in the serum and diverse tissues. Vitamin K administration increased the gamma-glutamyl carboxylated form of matrix gla protein (cMGP), alleviating ectopic calcification and fibrosis in vertebrae, eyes, and hearts. Our findings contribute to a comprehensive understanding of PXE pathophysiology from zebrafish models.


Sign in / Sign up

Export Citation Format

Share Document