high stearic acid
Recently Published Documents


TOTAL DOCUMENTS

38
(FIVE YEARS 14)

H-INDEX

13
(FIVE YEARS 1)

2021 ◽  
pp. 1-8
Author(s):  
Tommaso Martinelli ◽  
Karin Baumann ◽  
Andreas Börner

Abstract Milk thistle, Silybum marianum (L.) Gaertn. (Asteraceae), is an economically important medicinal plant utilized for silymarin production. Moreover, the species has been positively evaluated for vegetable oil and biomass production. Despite these positive characteristics, milk thistle is still marked by traits that are typical of undomesticated species (most importantly natural fruit dispersal at maturity) and requires further genetic improvement for its complete exploitation. This manuscript summarizes all the information collected through time about a collection of nine milk thistle wild and mutant lines and it discusses the possible further utilization of these genotypes. The accessions are characterized by interesting traits related to: fruit silymarin composition (S. marianum chemotype A and B), fruit fatty acid composition (high oleic and high stearic acid lines), fruit condensed tannins content, vegetative biomass composition (modification of xylans or lignin content), vegetative biomass structure (dwarf and tall lines), modifications of leaf variegation (hypervareigated line) and different types of fruit shatter resistance at maturity. All the lines underwent subsequent generations of selfing and are stable for all the described traits. The accessions will be made available at the Genebank of the Leibniz Institute of Plant Genetics and Crop Plant Research (IPK, Gatersleben) and may prove to be a useful genetic material for the improvement of qualitative fruit traits (silymarin quality, fatty acid composition) and for the further development of shatter-resistant S. marianum genotypes towards the complete domestication of this promising species.


2021 ◽  
Author(s):  
Huimin Lu ◽  
Rui Guo ◽  
Yunjin Zhang ◽  
Shenghan Su ◽  
Qingrui Zhao ◽  
...  

Long-term consumption of a high-fat diet increases the circulating concentration of stearic acid (SA), which has a potent toxic effect on β-cells, but the underlying molecular mechanisms of this action have not been fully elucidated. Here, we evaluated the role of lncRNA TCONS_00077866 (lnc866) in SA-induced β<i>-</i>cell inflammation. lnc866 was selected for study because lncRNA high-throughput sequencing analysis demonstrated it to have the largest fold-difference in expression of five lncRNAs that were affected by SA treatment. Knockdown of lnc866 by virus-mediated shRNA expression in mice or by Smart Silencer in mouse pancreatic β-TC6 cells significantly inhibited the SA-induced reduction in insulin secretion and β-cell inflammation. According to lncRNA-microRNA (miRNAs)-mRNA co-expression network analysis and luciferase reporter assays, lnc866 directly bound to miR-297b-5p, thereby preventing it from reducing the expression of its target serum amyloid A3 (SAA3). Furthermore, overexpression of miR-297b-5p or inhibition of SAA3 also had marked protective effects against the deleterious effects of SA in β-TC6 cells and mouse islets. In conclusion, lnc866 silencing ameliorates SA-induced β<i>-</i>cell inflammation by targeting the miR-297b-5p/SAA3 axis. lnc866 inhibition may represent a new strategy to protect β-cells against the effects of SA during the development of type 2 diabetes.


2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Bingyu Yang ◽  
Xianfeng Zhang ◽  
Huanle Gong ◽  
Yuhui Huang ◽  
Chang Wang ◽  
...  

2021 ◽  
Author(s):  
Huimin Lu ◽  
Rui Guo ◽  
Yunjin Zhang ◽  
Shenghan Su ◽  
Qingrui Zhao ◽  
...  

Long-term consumption of a high-fat diet increases the circulating concentration of stearic acid (SA), which has a potent toxic effect on β-cells, but the underlying molecular mechanisms of this action have not been fully elucidated. Here, we evaluated the role of lncRNA TCONS_00077866 (lnc866) in SA-induced β<i>-</i>cell inflammation. lnc866 was selected for study because lncRNA high-throughput sequencing analysis demonstrated it to have the largest fold-difference in expression of five lncRNAs that were affected by SA treatment. Knockdown of lnc866 by virus-mediated shRNA expression in mice or by Smart Silencer in mouse pancreatic β-TC6 cells significantly inhibited the SA-induced reduction in insulin secretion and β-cell inflammation. According to lncRNA-microRNA (miRNAs)-mRNA co-expression network analysis and luciferase reporter assays, lnc866 directly bound to miR-297b-5p, thereby preventing it from reducing the expression of its target serum amyloid A3 (SAA3). Furthermore, overexpression of miR-297b-5p or inhibition of SAA3 also had marked protective effects against the deleterious effects of SA in β-TC6 cells and mouse islets. In conclusion, lnc866 silencing ameliorates SA-induced β<i>-</i>cell inflammation by targeting the miR-297b-5p/SAA3 axis. lnc866 inhibition may represent a new strategy to protect β-cells against the effects of SA during the development of type 2 diabetes.


2021 ◽  
Author(s):  
Huimin Lu ◽  
Rui Guo ◽  
Yunjin Zhang ◽  
Shenghan Su ◽  
Qingrui Zhao ◽  
...  

Long-term consumption of a high-fat diet increases the circulating concentration of stearic acid (SA), which has a potent toxic effect on β-cells, but the underlying molecular mechanisms of this action have not been fully elucidated. Here, we evaluated the role of lncRNA TCONS_00077866 (lnc866) in SA-induced β<i>-</i>cell inflammation. lnc866 was selected for study because lncRNA high-throughput sequencing analysis demonstrated it to have the largest fold-difference in expression of five lncRNAs that were affected by SA treatment. Knockdown of lnc866 by virus-mediated shRNA expression in mice or by Smart Silencer in mouse pancreatic β-TC6 cells significantly inhibited the SA-induced reduction in insulin secretion and β-cell inflammation. According to lncRNA-microRNA (miRNAs)-mRNA co-expression network analysis and luciferase reporter assays, lnc866 directly bound to miR-297b-5p, thereby preventing it from reducing the expression of its target serum amyloid A3 (SAA3). Furthermore, overexpression of miR-297b-5p or inhibition of SAA3 also had marked protective effects against the deleterious effects of SA in β-TC6 cells and mouse islets. In conclusion, lnc866 silencing ameliorates SA-induced β<i>-</i>cell inflammation by targeting the miR-297b-5p/SAA3 axis. lnc866 inhibition may represent a new strategy to protect β-cells against the effects of SA during the development of type 2 diabetes.


2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Rui Guo ◽  
Yunjin Zhang ◽  
Yue Yu ◽  
Shenghan Su ◽  
Qingrui Zhao ◽  
...  

Abstract Background Chronic exposure of pancreatic β cells to high levels of stearic acid (C18:0) leads to impaired insulin secretion, which accelerates the progression of type 2 diabetes mellitus (T2DM). Recently, long noncoding RNAs (lncRNAs) were found to participate in saturated fatty acid-induced metabolism dysfunction. However, their contribution to stearic acid-induced β-cell dysfunction remains largely unknown. This study evaluated the possible role of the lncRNA TCONS_00230836 in stearic acid-stimulated lipotoxicity to β cells. Method Using high-throughput RNA-sequencing, TCONS_00230836 was screened out as being exclusively differentially expressed in stearic acid-treated mouse β-TC6 cells. Co-expression network was constructed to reveal the potential mRNAs targeted for lncRNA TCONS_00230836. Changes in this lncRNA’s and candidate mRNAs’ levels were further assessed by real-time PCR in stearic acid-treated β-TC6 cells and islets of mice fed a high-stearic-acid diet (HSD). The localization of TCONS_00230836 was detected by fluorescent in situ hybridization. The endogenous lncRNA TCONS_00230836 in β-TC6 cells was abrogated by its Smart Silencer. Results TCONS_00230836 was enriched in mouse islets and mainly localized in the cytoplasm. Its expression was significantly increased in stearic acid-treated β-TC6 cells and HSD-fed mouse islets. Knockdown of TCONS_00230836 significantly restored stearic acid-impaired glucose-stimulated insulin secretion through alleviating endoplasmic reticulum stress. However, stearic acid-induced β cell apoptosis was not obviously recovered. Conclusion Our findings suggest the involvement of TCONS_00230836 in stearic acid-induced β-cell dysfunction, which provides novel insight into stearic acid-induced lipotoxicity to β cells. Anti-lncRNA TCONS_00230836 might be a new therapeutic strategy for alleviating stearic acid-induced β-cell dysfunction in the progression of T2DM.


2020 ◽  
Author(s):  
Rui Guo ◽  
Yunjin Zhang ◽  
Yue Yu ◽  
Shenghan Su ◽  
Qingrui Zhao ◽  
...  

Abstract Background: Chronic exposure of pancreatic β cells to high levels of stearic acid (C18:0) leads to impaired insulin secretion, which accelerates the progression of type 2 diabetes mellitus (T2DM). Recently, long noncoding RNAs (lncRNAs) were found to participate in saturated fatty acid-induced metabolism dysfunction. However, their contribution to stearic acid-induced β-cell dysfunction remains largely unknown. This study evaluated the possible role of the lncRNA TCONS_00230836 in stearic acid-stimulated lipotoxicity to β cells. Method: Using high-throughput RNA-sequencing, TCONS_00230836 was screened out as being exclusively differentially expressed in stearic acid-treated mouse β-TC6 cells. Co-expression network was constructed to reveal the potential mRNAs targeted for lncRNA TCONS_00230836. Changes in this lncRNA’s and candidate mRNAs’levels were further assessed by real-time PCR in stearic acid-treated β-TC6 cells and islets of mice fed a high-stearic-acid diet (HSD). The localization of TCONS_00230836 was detected by fluorescent in situ hybridization. The endogenous lncRNA TCONS_00230836 in β-TC6 cells was abrogated by its Smart Silencer. Results: The lncRNA TCONS_00230836 was enriched in mouse islets and mainly localized in the cytoplasm. Its expression was significantly increased in stearic acid-treated β-TC6 cells and HSD-fed mouse islets. Knockdown of TCONS_00230836 apparently restored stearic acid-impaired GSIS through alleviating endoplasmic reticulum stress via a PERK/eIF2α-dependent pathway. However, stearic acid-induced β-cell apoptosis was not obviously recovered. Conclusion: Our findings suggest the involvement of the lncRNA TCONS_00230836 in stearic acid-induced β-cell dysfunction, which provides novel insight into stearic acid-induced lipotoxicity to β cells. Anti-lncRNA TCONS_00230836 might be a new therapeutic strategy for alleviating stearic acid-induced β-cell dysfunction in the progression of T2DM.


2020 ◽  
Vol 71 (22) ◽  
pp. 6969-6987
Author(s):  
Naoufal Lakhssassi ◽  
Zhou Zhou ◽  
Shiming Liu ◽  
Sarbottam Piya ◽  
Mallory A Cullen ◽  
...  

Abstract Developing soybean lines with high levels of stearic acid is a primary goal of the soybean industry. Most high-stearic-acid soybeans carry different GmSACPD-C mutated alleles. However, due to the dual role of GmSACPD-C in seeds and nodule development, all derived deleterious GmSACPD-C mutant alleles are of extremely poor agronomic value because of defective nodulation. The soybean stearoyl-acyl carrier protein desaturase (GmSACPD) gene family is composed of five members. Comparative genomics analysis indicated that SACPD genes were duplicated and derived from a common ancestor that is still present in chlorophytic algae. Synteny analysis showed the presence of segment duplications between GmSACPD-A/GmSACPD-B, and GmSACPD-C/GmSACPD-D. GmSACPD-E was not contained in any duplicated segment and may be the result of tandem duplication. We developed a TILLING by Target Capture Sequencing (Tilling-by-Sequencing+) technology, a versatile extension of the conventional TILLING by sequencing, and successfully identified 12, 14, and 18 ethyl methanesulfonate mutants at the GmSACPD-A, GmSACPD-B, and GmSACPD-D genes, respectively. Functional analysis of all identified mutants revealed an unprecedented role of GmSACPD-A, GmSACPD-B, and GmSACPD-D in unsaturated fatty acid biosynthesis without affecting nodule development and structure. This discovery will positively impact the development of high-stearic-acid lines to enhance soybean nutritional value without potential developmental tradeoffs.


2020 ◽  
Vol 92 (6) ◽  
pp. 817-826
Author(s):  
Antonina A. Stepacheva ◽  
Yury V. Lugovoy ◽  
Oleg V. Manaenkov ◽  
Alexander I. Sidorov ◽  
Valentina G. Matveeva ◽  
...  

AbstractIn the current paper, the possibility of the use of magnetically separable catalysts containing ruthenium oxide species in the supercritical deoxygenation of stearic acid for producing of the second generation of biodiesel is reported. Three different supports (silica, ceria, and hypercrosslinked polystyrene) were used for the stabilization of magnetic nanoparticles (MNPs) and Ru-containing particles. The effect of support on the magnetic properties as well as the catalytic activity of the obtained systems was studied. All synthesized catalysts were shown to provide high stearic acid conversion (up to 95 %). The highest yield of C17+ hydrocarbons (up to 86 %) was observed while using the Ru–Fe3O4-HPS system. Ru–Fe3O4-HPS was characterized by the high values of the specific surface area (364 m2/g) and saturation magnetization (4.5 emu/g). The chosen catalytic system was found to maintain its catalytic activity for a minimum of 10 consecutive cycles.


Sign in / Sign up

Export Citation Format

Share Document