evaporative emissions
Recently Published Documents


TOTAL DOCUMENTS

118
(FIVE YEARS 21)

H-INDEX

16
(FIVE YEARS 2)

Atmosphere ◽  
2022 ◽  
Vol 13 (1) ◽  
pp. 82
Author(s):  
Sergio Ibarra-Espinosa ◽  
Edmilson Dias de Freitas ◽  
Maria de Fátima Andrade ◽  
Eduardo Landulfo

In this work, the possible benefits obtained due to the implementation of evaporative emissions control measures, originating from vehicle fueling processes, on ozone concentrations are verified. The measures studied are: (1) control at the moment when the tank trucks supply the fuel to the gas stations (Stage 1); (2) control at the moment when the vehicles are refueled at the gas stations, through a device installed in the pumps (Stage 2); (3) same as the previous control, but through a device installed in the vehicles (ORVR). The effects of these procedures were analyzed using numerical modeling with the VEIN and WRF/Chem models for a base case in 2018 and different emission scenarios, both in 2018 and 2031. The results obtained for 2018 show that the implementation of Stages 1 and 2 would reduce HCNM emissions by 47.96%, with a consequent reduction of 19.9% in the average concentrations of tropospheric ozone. For 2031, the greatest reductions in ozone concentrations were obtained with the scenario without ORVR, and with Stage 1 and Stage 2 (64.65% reduction in HCNM emissions and 31.93% in ozone), followed by the scenario with ORVR and with Stage 1 and Stage 2 (64.39% reduction in HCNM emissions and 32.98% in ozone concentrations).


Fuel ◽  
2021 ◽  
Vol 304 ◽  
pp. 121427
Author(s):  
Luca Romagnuolo ◽  
Emma Frosina ◽  
Assunta Andreozzi ◽  
Adolfo Senatore ◽  
Francesco Fortunato

2021 ◽  
Author(s):  
Emma Frosina ◽  
Luca Romagnuolo ◽  
Assunta Andreozzi ◽  
Francesco Fortunato ◽  
Adolfo Senatore ◽  
...  

2021 ◽  
Vol 268 ◽  
pp. 01016
Author(s):  
Kun Liao ◽  
Ni Zhang ◽  
Lingyun Wei ◽  
Wen Sun ◽  
Shenghua Qu

With the further tightening of light vehicle emission regulations, the emission limit of evaporative pollutants is reduced from 2.0g/test to 0.7g/test from the fifth stage to the sixth stage in China. The definition of evaporative pollutants in the regulation refers to the hydrocarbon loss from the fuel system of the vehicle. Through the actual evaporation test, it is found that the tested emissions include not only the hydrocarbon emissions from the fuel system, but also the hydrocarbon emissions from the non fuel system. In this study, an experimental study on evaporative pollutants was carried out for a vehicle and its components developed by Dongfeng Motor Company. The results show that the hydrocarbon emission from fuel system accounts for 21% of the total hydrocarbon emission. In order to reduce the emission of evaporative pollutants, we can start from two aspects: one is to improve the design of fuel system; the other is to carry out specific pretreatment for non fuel system.


2020 ◽  
Vol 20 (20) ◽  
pp. 12133-12152
Author(s):  
Ashish Kumar ◽  
Vinayak Sinha ◽  
Muhammed Shabin ◽  
Haseeb Hakkim ◽  
Bernard Bonsang ◽  
...  

Abstract. In complex atmospheric emission environments such as urban agglomerates, multiple sources control the ambient chemical composition driving air quality and regional climate. In contrast to pristine sites, where reliance on single or a few chemical tracers is often adequate for resolving pollution plumes and source influences, the comprehensive chemical fingerprinting of sources using non-methane hydrocarbons (NMHCs) and the identification of suitable tracer molecules and emission ratios becomes necessary. Here, we characterise and present chemical fingerprints of some major urban and agricultural emission sources active in South Asia, such as paddy stubble burning, garbage burning, idling vehicular exhaust and evaporative fuel emissions. A total of 121 whole air samples were actively collected from the different emission sources in passivated air sampling steel canisters and then analysed for 49 NMHCs (22 alkanes, 16 aromatics, 10 alkenes and one alkyne) using thermal desorption gas chromatography flame ionisation detection. Several new insights were obtained. Propane was found to be present in paddy stubble fire emissions (8 %), and therefore, for an environment impacted by crop residue fires, the use of propane as a fugitive liquefied petroleum gas (LPG) emission tracer must be done with caution. Propene was found to be ∼ 1.6 times greater (by weight) than ethene in smouldering paddy fires. Compositional differences were observed between evaporative emissions of domestic LPG and commercial LPG, which are used in South Asia. While the domestic LPG vapours had more propane (40 ± 6 %) than n-butane (19 ± 2 %), the converse was true for commercial LPG vapours (7 ± 6 % and 37 ± 4 %, respectively). Isoprene was identified as a new tracer for distinguishing paddy stubble and garbage burning in the absence of isoprene emissions at night from biogenic sources. Analyses of source-specific inter-NMHC molar ratios revealed that toluene/benzene ratios can be used to distinguish among paddy stubble fire emissions in the flaming (0.38 ± 0.11) and smouldering stages (1.40 ± 0.10), garbage burning flaming (0.26 ± 0.07) and smouldering emissions (0.59 ± 0.16), and traffic emissions (3.54 ± 0.21), whereas i-pentane ∕ n-pentane can be used to distinguish biomass burning emissions (0.06–1.46) from the petrol-dominated traffic and fossil fuel emissions (2.83–4.13). i-butane ∕ n-butane ratios were similar (0.20–0.30) for many sources and could be used as a tracer for photochemical ageing. In agreement with previous studies, i-pentane, propane and acetylene were identified as suitable chemical tracers for petrol vehicular and evaporative emissions, LPG evaporative and vehicular emissions and flaming-stage biomass fires, respectively. The secondary pollutant formation potential and human health impact of the sources was also assessed in terms of their hydroxyl radical (OH) reactivity (s−1), ozone formation potential (OFP; gO3/gNMHC) and fractional benzene, toluene, ethylbenzene and xylenes (BTEX) content. Petrol vehicular emissions, paddy stubble fires and garbage fires were found to have a higher pollution potential (at ≥95 % confidence interval) relative to the other sources studied in this work. Thus, many results of this study provide a new foundational framework for quantitative source apportionment studies in complex emission environments.


Atmosphere ◽  
2020 ◽  
Vol 11 (10) ◽  
pp. 1110
Author(s):  
Hiroo Hata ◽  
Syun-ya Tanaka ◽  
Genta Noumura ◽  
Hiroyuki Yamada ◽  
Kenichi Tonokura

This study evaluated gasoline evaporative emissions from fuel-cap removal during the refueling process (or “puff loss”) for one gasoline vehicle in the Japanese market. Specifically, the puff loss emissions were measured after a real-world driving event in urban Tokyo, Japan for different seasons and gasoline types. The experimental results indicated higher puff loss emissions during summer than in winter and spring despite using low vapor pressure gasoline during summer. These higher puff loss emissions accounted maximally for more than 4 g of the emissions from the tested vehicle. The irregular emission trends could be attributed to the complex relationships between physical parameters such as fuel-tank filling, ambient temperature, ambient pressure, and gasoline vapor pressure. Furthermore, an estimation model was developed based on the theory of thermodynamics to determine puff loss emissions under arbitrary environmental conditions. The estimation model included no fitting parameter and was in good agreement with the measured puff loss emissions. Finally, a sensitivity analysis was conducted to elucidate the effects of three physical parameters, i.e., fuel tank-filling, ambient pressure, and gasoline type, on puff loss emissions. The results indicated that fuel tank-filling was the most important parameter affecting the quantity of puff loss emissions. Further, the proposed puff loss estimation model is likely to aid the evaluation of future volatile organic compound emission inventories.


Sign in / Sign up

Export Citation Format

Share Document