scholarly journals Supersymmetry, T-duality and heterotic α′-corrections

2021 ◽  
Vol 2021 (7) ◽  
Author(s):  
Eric Lescano ◽  
Carmen A. Núñez ◽  
Jesús A. Rodríguez

Abstract Higher-derivative interactions and transformation rules of the fields in the effective field theories of the massless string states are strongly constrained by space-time symmetries and dualities. Here we use an exact formulation of ten dimensional $$ \mathcal{N} $$ N = 1 supergravity coupled to Yang-Mills with manifest T-duality symmetry to construct the first order α′-corrections of the heterotic string effective action. The theory contains a supersymmetric and T-duality covariant generalization of the Green-Schwarz mechanism that determines the modifications to the leading order supersymmetry transformation rules of the fields. We compute the resulting field-dependent deformations of the coefficients in the supersymmetry algebra and construct the invariant action, with up to and including four-derivative terms of all the massless bosonic and fermionic fields of the heterotic string spectrum.

2021 ◽  
Vol 2021 (7) ◽  
Author(s):  
Zachary Elgood ◽  
Dimitrios Mitsios ◽  
Tomás Ortín ◽  
David Pereñíguez

Abstract We prove the first law of black hole mechanics in the context of the Heterotic Superstring effective action compactified on a torus to leading order in α′, using Wald’s formalism, covariant Lie derivatives and momentum maps. The Kalb-Ramond field strength of this theory has Abelian Chern-Simons terms which induce Nicolai-Townsend transformations of the Kalb-Ramond field. We show how to deal with all these gauge symmetries deriving the first law in terms of manifestly gauge-invariant quantities. In presence of Chern-Simons terms, several definitions of the conserved charges exist, but the formalism picks up only one of them to play a role in the first law. We study explicitly a non-extremal, charged, black ring solution of pure $$ \mathcal{N} $$ N = 1, d = 5 supergravity embedded in the Heterotic Superstring effective field theory.This work is a first step towards the derivation of the first law at first order in α′ where, more complicated, non-Abelian, Lorentz (“gravitational”) and Yang-Mills Chern-Simons terms are included in the Kalb-Ramond field strength. The derivation of a first law is a necessary step towards the derivation of a manifestly gauge-invariant entropy formula which is still lacking in the literature. In its turn, this entropy formula is needed to compare unambiguously macroscopic and microscopic black hole entropies.


Universe ◽  
2021 ◽  
Vol 7 (8) ◽  
pp. 253
Author(s):  
David R. Junior ◽  
Luis E. Oxman ◽  
Gustavo M. Simões

In this review, we discuss the present status of the description of confining flux tubes in SU(N) pure Yang–Mills theory in terms of ensembles of percolating center vortices. This is based on three main pillars: modeling in the continuum the ensemble components detected in the lattice, the derivation of effective field representations, and contrasting the associated properties with Monte Carlo lattice results. The integration of the present knowledge about these points is essential to get closer to a unified physical picture for confinement. Here, we shall emphasize the last advances, which point to the importance of including the non-oriented center-vortex component and non-Abelian degrees of freedom when modeling the center-vortex ensemble measure. These inputs are responsible for the emergence of topological solitons and the possibility of accommodating the asymptotic scaling properties of the confining string tension.


2021 ◽  
Vol 2021 (4) ◽  
Author(s):  
Djuna Croon ◽  
Oliver Gould ◽  
Philipp Schicho ◽  
Tuomas V. I. Tenkanen ◽  
Graham White

Abstract We critically examine the magnitude of theoretical uncertainties in perturbative calculations of fist-order phase transitions, using the Standard Model effective field theory as our guide. In the usual daisy-resummed approach, we find large uncertainties due to renormalisation scale dependence, which amount to two to three orders-of-magnitude uncertainty in the peak gravitational wave amplitude, relevant to experiments such as LISA. Alternatively, utilising dimensional reduction in a more sophisticated perturbative approach drastically reduces this scale dependence, pushing it to higher orders. Further, this approach resolves other thorny problems with daisy resummation: it is gauge invariant which is explicitly demonstrated for the Standard Model, and avoids an uncontrolled derivative expansion in the bubble nucleation rate.


2021 ◽  
Vol 2021 (6) ◽  
Author(s):  
M. Cvitan ◽  
P. Dominis Prester ◽  
S. Giaccari ◽  
M. Paulišić ◽  
I. Vuković

Abstract We analyze a novel approach to gauging rigid higher derivative (higher spin) symmetries of free relativistic actions defined on flat spacetime, building on the formalism originally developed by Bonora et al. and Bekaert et al. in their studies of linear coupling of matter fields to an infinite tower of higher spin fields. The off-shell definition is based on fields defined on a 2d-dimensional master space equipped with a symplectic structure, where the infinite dimensional Lie algebra of gauge transformations is given by the Moyal commutator. Using this algebra we construct well-defined weakly non-local actions, both in the gauge and the matter sector, by mimicking the Yang-Mills procedure. The theory allows for a description in terms of an infinite tower of higher spin spacetime fields only on-shell. Interestingly, Euclidean theory allows for such a description also off-shell. Owing to its formal similarity to non-commutative field theories, the formalism allows for the introduction of a covariant potential which plays the role of the generalised vielbein. This covariant formulation uncovers the existence of other phases and shows that the theory can be written in a matrix model form. The symmetries of the theory are analyzed and conserved currents are explicitly constructed. By studying the spin-2 sector we show that the emergent geometry is closely related to teleparallel geometry, in the sense that the induced linear connection is opposite to Weitzenböck’s.


2020 ◽  
Vol 2020 (12) ◽  
Author(s):  
Arshia Momeni ◽  
Justinas Rumbutis ◽  
Andrew J. Tolley

Abstract We consider the double copy of massive Yang-Mills theory in four dimensions, whose decoupling limit is a nonlinear sigma model. The latter may be regarded as the leading terms in the low energy effective theory of a heavy Higgs model, in which the Higgs has been integrated out. The obtained double copy effective field theory contains a massive spin-2, massive spin-1 and a massive spin-0 field, and we construct explicitly its interacting Lagrangian up to fourth order in fields. We find that up to this order, the spin-2 self interactions match those of the dRGT massive gravity theory, and that all the interactions are consistent with a Λ3 = (m2MPl)1/3 cutoff. We construct explicitly the Λ3 decoupling limit of this theory and show that it is equivalent to a bi-Galileon extension of the standard Λ3 massive gravity decoupling limit theory. Although it is known that the double copy of a nonlinear sigma model is a special Galileon, the decoupling limit of massive Yang-Mills theory is a more general Galileon theory. This demonstrates that the decoupling limit and double copy procedures do not commute and we clarify why this is the case in terms of the scaling of their kinematic factors.


2013 ◽  
Vol 88 (10) ◽  
Author(s):  
Solomon Endlich ◽  
Alberto Nicolis ◽  
Rafael A. Porto ◽  
Junpu Wang

2020 ◽  
Vol 2020 (9) ◽  
Author(s):  
Kirill Krasnov ◽  
Yuri Shtanov

Abstract We describe a new perturbation theory for General Relativity, with the chiral first-order Einstein-Cartan action as the starting point. Our main result is a new gauge-fixing procedure that eliminates the connection-to-connection propagator. All other known first-order formalisms have this propagator non-zero, which significantly increases the combinatorial complexity of any perturbative calculation. In contrast, in the absence of the connection-to-connection propagator, our formalism leads to an effective description in which only the metric (or tetrad) propagates, there are only cubic and quartic vertices, but some vertex legs are special in that they cannot be connected by the propagator. The new formalism is the gravity analog of the well-known and powerful chiral description of Yang-Mills theory.


1991 ◽  
Vol 06 (32) ◽  
pp. 2995-3003 ◽  
Author(s):  
C. M. HULL ◽  
L. PALACIOS

The coupling of scalars fields to chiral W3 gravity is reviewed. In general the quantum current algebra generated by the spin-two and three currents does not close when the "natural" regularization (corresponding to the normal ordering with respect to the modes of ∂ϕi) is used, and the non-closure reflects matter-dependent anomalies in the path integral quantization. We consider the most general modification of the current, involving higher derivative "background charge" terms, and find the conditions for them to form a closed algebra in the "natural" regularization. These conditions can be satisfied only for the two-boson model. In that case, it is possible to cancel all the matter-dependent anomalies by adding finite local counter terms to the action and modifying the transformation rules of the fields.


2021 ◽  
Vol 2021 (3) ◽  
Author(s):  
Marieke Postma ◽  
Graham White

Abstract To obtain a first order phase transition requires large new physics corrections to the Standard Model (SM) Higgs potential. This implies that the scale of new physics is relatively low, raising the question whether an effective field theory (EFT) description can be used to analyse the phase transition in a (nearly) model-independent way. We show analytically and numerically that first order phase transitions in perturbative extensions of the SM cannot be described by the SM-EFT. The exception are Higgs-singlet extension with tree-level matching; but even in this case the SM-EFT can only capture part of the full parameter space, and if truncated at dim-6 operators, the description is at most qualitative. We also comment on the applicability of EFT techniques to dark sector phase transitions.


Sign in / Sign up

Export Citation Format

Share Document