scholarly journals Modeling of effective interactions between ligand coated nanoparticles through symmetry functions

Author(s):  
Dinesh Chintha ◽  
Shivanand Kumar Veesam ◽  
Emanuele Boattini ◽  
Laura Filion ◽  
Sudeep Neelakantan Punnathanam
Langmuir ◽  
2014 ◽  
Vol 30 (42) ◽  
pp. 12578-12586 ◽  
Author(s):  
Konrad Schwenke ◽  
Lucio Isa ◽  
David L. Cheung ◽  
Emanuela Del Gado

1984 ◽  
Vol 45 (C4) ◽  
pp. C4-231-C4-249
Author(s):  
W. G. Love ◽  
M. A. Franey

1998 ◽  
Vol 538 ◽  
Author(s):  
Raúl A. Enrique ◽  
Pascal Bellon

AbstractPhase stability in alloys under irradiation is studied considering effective thermodynamic potentials. A simple kinetic model of a binary alloy with phase separation is investigated. Time evolution in the alloy results from two competing dynamics: thermal diffusion, and irradiation induced ballistic exchanges. The dynamical (steady state) phase diagram is evaluated exactly performing Kinetic Monte Carlo simulations. The solution is then compared to two theoretical frameworks: the effective quasi-interactions model as proposed by Vaks and Kamishenko, and the effective free energy model as proposed by Martin. New developments of these models are proposed to allow for quantitative comparisons. Both theoretical frameworks yield fairly good approximations to the dynamical phase diagram.


1985 ◽  
Vol 40 (1) ◽  
pp. 14-28
Author(s):  
H. Stumpf

Unified nonlinear spinor field models are selfregularizing quantum field theories in which all observable (elementary and non-elementary) particles are assumed to be bound states of fermionic preon fields. Due to their large masses the preons themselves are confined. In preceding papers a functional energy representation, the statistical interpretation and the dynamical equations were derived. In this paper the dynamics of composite particles is discussed. The composite particles are defined to be eigensolutions of the diagonal part of the energy representation. Corresponding calculations are in preparation, but in the present paper a suitable composite particle spectrum is assumed. It consists of preon-antipreon boson states and threepreon- fermion states with corresponding antifermions and contains bound states as well as preon scattering states. The state functional is expanded in terms of these composite particle states with inclusion of preon scattering states. The transformation of the functional energy representation of the spinor field into composite particle functional operators produces a hierarchy of effective interactions at the composite particle level, the leading terms of which are identical with the functional energy representation of a phenomenological boson-fermion coupling theory. This representation is valid as long as the processes are assumed to be below the energetic threshold for preon production or preon break-up reactions, respectively. From this it can be concluded that below the threshold the effective interactions of composite particles in a unified spinor field model lead to phenomenological coupling theories which depend in their properties on the bound state spectrum of the self-regularizing spinor theory.


2020 ◽  
Vol 41 (Supplement_2) ◽  
Author(s):  
H Yang ◽  
Y Song ◽  
Z Huang ◽  
J Qian ◽  
Z Pang ◽  
...  

Abstract Background Aortic valve disease is the most common valvular heart disease leading to valve replacement. The efficacy of pharmacological therapy for aortic valve disease is limited by the high mechanical stress at the aortic valves impairing the binding rate. We aimed to identify nanoparticle coating with entire platelet membranes to fully mimic their inherent multiple adhesion mechanisms and target the sclerotic aortic valve of apolipoprotein E-deficient (ApoE−/−) mice based on their multiple sites binding capacity under high shear stress. Methods Considering the potent interaction of platelet membrane glycoproteins with components present in sclerotic aortic valves, platelet membrane-coated nanoparticles (PNPs) were synthetized and the binding capacity under high shear stress was evaluated in vitro and in vivo. Results Compared with PNPs bound intensity in the static station, 161%, 59%, and 39% of attached PNPs remained adherent on VWF-, collagen-, and fibrin-coated surfaces under shear stress of 25dyn/cm2 respectively. PNPs demonstrated effectively adhering to von Willebrand factor, collagen and fibrin under shear stresses in vitro. In an aortic valve disease model established in ApoE−/− mice, PNPs group exhibited significant increase of accumulation in the aortic valves compared with PBS and control NP group. PNPs displayed high degrees of proximity or co-localization with vWF, collagen and fibrin, which exhibited good targeting to sclerotic aortic valves by mimicking platelet multiple adhesive mechanisms. Conclusion PNPs could provide a promising platform for the molecular diagnosis and targeting treatment of aortic valve disease. Targeting combination Funding Acknowledgement Type of funding source: Foundation. Main funding source(s): National Natural Science Foundation of China


2021 ◽  
Vol 22 (15) ◽  
pp. 7877
Author(s):  
Fahimeh Shahinnia ◽  
Néstor Carrillo ◽  
Mohammad-Reza Hajirezaei

Environmental adversities, particularly drought and nutrient limitation, are among the major causes of crop losses worldwide. Due to the rapid increase of the world’s population, there is an urgent need to combine knowledge of plant science with innovative applications in agriculture to protect plant growth and thus enhance crop yield. In recent decades, engineering strategies have been successfully developed with the aim to improve growth and stress tolerance in plants. Most strategies applied so far have relied on transgenic approaches and/or chemical treatments. However, to cope with rapid climate change and the need to secure sustainable agriculture and biomass production, innovative approaches need to be developed to effectively meet these challenges and demands. In this review, we summarize recent and advanced strategies that involve the use of plant-related cyanobacterial proteins, macro- and micronutrient management, nutrient-coated nanoparticles, and phytopathogenic organisms, all of which offer promise as protective resources to shield plants from climate challenges and to boost stress tolerance in crops.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Pengkai Wu ◽  
Xing Jiang ◽  
Shuai Yin ◽  
Ying Yang ◽  
Tianqing Liu ◽  
...  

Abstract Background RBC membrane derived nanoparticles (NPs) represent an emerging platform with prolonged circulation capacity for the delivery of active substances. For functionalize derived RBCs NPs, various strategies, such as biomimetic rebuilding of RBCs, chemical modification or inserting ligands, have been carried out to improve their performance. However, one potential adverse effect for these methods is the structural failure of membrane proteins, consequently affecting its original immune escape function. Results In this study, we reported a green technology of “disassembly-reassembly” to prepare biomimetic reconstituted RBCs membrane (rRBCs) by separating the endogenous proteins and lipids from nature RBC membrane. IR780 iodide was used as a pattern drug to verify the property and feasibility of rRBCs by constructing IR780@rRBC NPs with IR780@RBC NPs and free IR780 as controls. The results demonstrated the superiority of IR780@rRBC NPs in toxicity, stability, pharmacokinetics and pharmacodynamics compared with IR780@rRBC and free IR780. Conclusions The reported “disassembly-reassembly” strategy shows great potential to produce controllable and versatile rRBC membrane-inspired delivery platform, which may be used to overcome the deficiency of functionalization in cell membrane coated nanoparticles . Graphic abstract


Molecules ◽  
2021 ◽  
Vol 26 (11) ◽  
pp. 3428
Author(s):  
Chaojie Zhu ◽  
Junkai Ma ◽  
Zhiheng Ji ◽  
Jie Shen ◽  
Qiwen Wang

Cardiovascular diseases (CVDs) are the leading cause of death worldwide, causing approximately 17.9 million deaths annually, an estimated 31% of all deaths, according to the WHO. CVDs are essentially rooted in atherosclerosis and are clinically classified into coronary heart disease, stroke and peripheral vascular disorders. Current clinical interventions include early diagnosis, the insertion of stents, and long-term preventive therapy. However, clinical diagnostic and therapeutic tools are subject to a number of limitations including, but not limited to, potential toxicity induced by contrast agents and unexpected bleeding caused by anti-platelet drugs. Nanomedicine has achieved great advancements in biomedical area. Among them, cell membrane coated nanoparticles, denoted as CMCNPs, have acquired enormous expectations due to their biomimetic properties. Such membrane coating technology not only helps avoid immune clearance, but also endows nanoparticles with diverse cellular and functional mimicry. In this review, we will describe the superiorities of CMCNPs in treating cardiovascular diseases and their potentials in optimizing current clinical managements.


Sign in / Sign up

Export Citation Format

Share Document