pachymic acid
Recently Published Documents


TOTAL DOCUMENTS

45
(FIVE YEARS 14)

H-INDEX

13
(FIVE YEARS 3)

Molecules ◽  
2021 ◽  
Vol 27 (1) ◽  
pp. 143
Author(s):  
Wenjun Zhu ◽  
Ying Liu ◽  
Jing Tang ◽  
Heping Liu ◽  
Naliang Jing ◽  
...  

Pachymic acid from Wolfiporia cocos possesses important medicinal values including anti-bacterial, anti-inflammatory, anti-viral, invigorating, anti-rejection, anti-tumor, and antioxidant activities. However, little is known about the biosynthetic pathway from lanostane to pachymic acid. In particular, the associated genes in the biosynthetic pathway have not been characterized, which limits the high-efficiency obtaining and application of pachymic acid. To characterize the synthetic pathway and genes involved in pachymic acid synthesis, in this study, we identified 11 triterpenoids in W. cocos using liquid chromatography tandem mass spectrometry (LC-MS/MS), and inferred the putative biosynthetic pathway from lanostane to pachymic acid based on analyzing the chemical structure of triterpenoids and the transcriptome data. In addition, we identified a key gene in the biosynthetic pathway encoding W. cocos sterol O-acyltransferase (WcSOAT), which catalyzes tumolusic acid to pachymic acid. The results show that silence of WcSOAT gene in W. cocos strain led to reduction of pachymic acid production, whereas overexpression of this gene increased pachymic acid production, indicating that WcSOAT is involved in pachymic acid synthesis in W. cocos and the biosynthesis of W. cocos pachymic acid is closely dependent on the expression of WcSOAT gene. In summary, the biosynthetic pathway of pachymic acid and the associated genes complement our knowledge on the biosynthesis of W. cocos pachymic acid and other triterpenoids, and also provides a reference for target genes modification for exploring high-efficiency obtaining of active components.


Author(s):  
Yuan He ◽  
Jian-hua Zhong ◽  
Xiao-dong Wei ◽  
Chu-ying Huang ◽  
Pai-lan Peng ◽  
...  

2021 ◽  
Vol 22 (19) ◽  
pp. 10710
Author(s):  
Nahla N. Younis ◽  
Alaa Salama ◽  
Mohamed A. Shaheen ◽  
Rana G. Eissa

Defects in cardiac contractility and heart failure (HF) are common following doxorubicin (DOX) administration. Different miRs play a role in HF, and their targeting was suggested as a promising therapy. We aimed to target miR-24, a suppressor upstream of junctophilin-2 (JP-2), which is required to affix the sarcoplasmic reticulum to T-tubules, and hence the release of Ca2+ in excitation–contraction coupling using pachymic acid (PA) and/or losartan (LN). HF was induced with DOX (3.5 mg/kg, i.p six doses, twice weekly) in 24 rats. PA and LN (10 mg/kg, daily) were administered orally for four weeks starting the next day of the last DOX dose. Echocardiography, left ventricle (LV) biochemical and histological assessment and electron microscopy were conducted. DOX increased serum BNP, HW/TL, HW/BW, mitochondrial number/size and LV expression of miR-24 but decreased EF, cardiomyocyte fiber diameter, LV content of JP-2 and ryanodine receptors-2 (RyR2). Treatment with either PA or LN reversed these changes. Combined PA + LN attained better results than monotherapies. In conclusion, HF progression following DOX administration can be prevented or even delayed by targeting miR-24 and its downstream JP-2. Our results, therefore, suggest the possibility of using PA alone or as an adjuvant therapy with LN to attain better management of HF patients, especially those who developed tolerance toward LN.


2021 ◽  
Vol 49 (5) ◽  
pp. 876-93
Author(s):  
Yanjun Gui ◽  
Lijuan Sun ◽  
Rui Liu ◽  
Jinzhu Luo

Pneumonia is a common infectious disease with high morbidity and mortality. It is caused by a variety of pathogenic microorganisms that infect the lung parenchyma. Anti-infective drugs are one of the preferred choices for the treatment of pneumonia. Pachymic acid (PA) is a lanolin triterpene compound from Poria cocos, which has antiemetic, anti-inflammatory, and anticancer properties. Although PA inhibits inflammatory response in a variety of diseases, its role in pneumonia is not clear. In this study, we established that PA improved histopathological changes in the lungs of rats with pneumonia. PA inhibited the expression of inflammatory cytokines in the serum of rats having pneumonia. In addition, PA inhibited the apoptosis of cells from rat lung tissues. Mechanically, PA inhibited inflammation and cell apoptosis via NF-κB and MAPK pathways. Therefore, PA could serve as a promising drug for treating pneumonia.


BioFactors ◽  
2021 ◽  
Author(s):  
Zihao Feng ◽  
Hailin Shi ◽  
Bojian Liang ◽  
Tianyu Ge ◽  
Menghui Cai ◽  
...  

2020 ◽  
Vol 103 (5) ◽  
pp. 1085-1098
Author(s):  
Xian-Pei Fu ◽  
Lin Xu ◽  
Bin-Bin Fu ◽  
Kang-Na Wei ◽  
Yu Liu ◽  
...  

Abstract Women with polycystic ovary syndrome (PCOS) are characterized by endocrine disorders accompanied by a decline in oocyte quality. In this study, we generated a PCOS mice model by hypodermic injection of dehydroepiandrosterone, and metformin was used as a positive control drug to study the effect of pachymic acid (PA) on endocrine and oocyte quality in PCOS mice. Compared with the model group, the mice treated with PA showed the following changes (slower weight gain, improved abnormal metabolism; increased development potential of GV oocytes, reduced number of abnormal MII oocytes, and damaged embryos; lower expression of ovarian-related genes in ovarian tissue and pro-inflammatory cytokines in adipose tissue). All these aspects show similar effects on metformin. Most notably, PA is superior to metformin in improving inflammation of adipose tissue and mitochondrial abnormalities. It is suggested that PA has the similar effect with metformin, which can improve the endocrine environment and oocyte quality of PCOS mice. These findings suggest that PA has the similar effect with metformin, which can improve the endocrine environment and oocyte quality of PCOS mice.


Xenobiotica ◽  
2020 ◽  
Vol 50 (8) ◽  
pp. 913-918
Author(s):  
Baodong Ding ◽  
Xiaofei Ji ◽  
Xueming Sun ◽  
Tongtong Zhang ◽  
Suping Mu

Sign in / Sign up

Export Citation Format

Share Document