Pachymic acid protects oocyte by improving the ovarian microenvironment in polycystic ovary syndrome mice†

2020 ◽  
Vol 103 (5) ◽  
pp. 1085-1098
Author(s):  
Xian-Pei Fu ◽  
Lin Xu ◽  
Bin-Bin Fu ◽  
Kang-Na Wei ◽  
Yu Liu ◽  
...  

Abstract Women with polycystic ovary syndrome (PCOS) are characterized by endocrine disorders accompanied by a decline in oocyte quality. In this study, we generated a PCOS mice model by hypodermic injection of dehydroepiandrosterone, and metformin was used as a positive control drug to study the effect of pachymic acid (PA) on endocrine and oocyte quality in PCOS mice. Compared with the model group, the mice treated with PA showed the following changes (slower weight gain, improved abnormal metabolism; increased development potential of GV oocytes, reduced number of abnormal MII oocytes, and damaged embryos; lower expression of ovarian-related genes in ovarian tissue and pro-inflammatory cytokines in adipose tissue). All these aspects show similar effects on metformin. Most notably, PA is superior to metformin in improving inflammation of adipose tissue and mitochondrial abnormalities. It is suggested that PA has the similar effect with metformin, which can improve the endocrine environment and oocyte quality of PCOS mice. These findings suggest that PA has the similar effect with metformin, which can improve the endocrine environment and oocyte quality of PCOS mice.

2014 ◽  
Vol 2014 ◽  
pp. 1-17 ◽  
Author(s):  
Joselyn Rojas ◽  
Mervin Chávez ◽  
Luis Olivar ◽  
Milagros Rojas ◽  
Jessenia Morillo ◽  
...  

Polycystic ovary syndrome (PCOS) is a highly prevalent endocrine-metabolic disorder that implies various severe consequences to female health, including alarming rates of infertility. Although its exact etiology remains elusive, it is known to feature several hormonal disturbances, including hyperandrogenemia, insulin resistance (IR), and hyperinsulinemia. Insulin appears to disrupt all components of the hypothalamus-hypophysis-ovary axis, and ovarian tissue insulin resistance results in impaired metabolic signaling but intact mitogenic and steroidogenic activity, favoring hyperandrogenemia, which appears to be the main culprit of the clinical picture in PCOS. In turn, androgens may lead back to IR by increasing levels of free fatty acids and modifying muscle tissue composition and functionality, perpetuating this IR-hyperinsulinemia-hyperandrogenemia cycle. Nonobese women with PCOS showcase several differential features, with unique biochemical and hormonal profiles. Nevertheless, lean and obese patients have chronic inflammation mediating the long term cardiometabolic complications and comorbidities observed in women with PCOS, including dyslipidemia, metabolic syndrome, type 2 diabetes mellitus, and cardiovascular disease. Given these severe implications, it is important to thoroughly understand the pathophysiologic interconnections underlying PCOS, in order to provide superior therapeutic strategies and warrant improved quality of life to women with this syndrome.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Roshan Nikbakht ◽  
Razieh Mohammadjafari ◽  
Mina Rajabalipour ◽  
Mahin Taheri Moghadam

Abstract Background To evaluate factors affecting oocyte/embryo quality in PolyCystic Ovary Syndrome (PCOS) patients undergoing Assisted Reproductive Technology (ART) cycles. Methods This case-control retrospective study was performed on PCOS patients referred to the infertility department of Imam Khomeini Hospital in Ahvaz from October 2017 to September 2019. Demographic and reproductive characterizations including age, gender, abortion history and infertility type (primary and secondary infertility) were extracted from patient’s records. TSH, AMH, LH, FSH, prolactin, lipid profile and blood glucose was measured. Biochemistry pregnancy was checked by determination of serum βHCG level and then, clinical pregnancy was confirmed by observing of pregnancy sac and fetal heart rate using Transvaginal USS. Results One-hundred thirty-five patients include 45 PCOS and 90 Non-PCOS patients with mean age of 31.93 ± 5.04 and 30.8 ± 5.38 (p = 0.24) were considered as case and control groups respectively. Retrieved oocyte numbers were significantly higher in PCOS patients (p = 0.024), but there was no significant difference in number of oocyte subtypes (MI, MII and GV) between two groups. The embryo numbers and its subtypes did not differ significantly in both groups. The clinical pregnancy rate was insignificantly lower in PCOS patients (p = 0.066) and there was a significant correlation between retrieved oocyte numbers with age(r= -0.2, p= 0.022) and AMH level (r = 0.433, p < 0.0001) respectively. Cholesterol level had shown a positive significant correlation with number of MI oocytes (r = 0.421, p = 0.026) and MII oocytes significantly affected by age (r= -0.250, p = 0.004) and AMH level (r = 0.480, p < 0.0001). Using Receiver operation characteristic (ROC) curve analysis, the cut-off value of total number of oocytes was > 10.5 with area under curve of 0.619±0.054(sensitivity 55.56% and specificity 69.66%) Conclusions The results of this study showed that although the number of oocytes in PCOS patients was significantly higher than non-PCOS patients, the quality of oocytes was not statistically different. The number and quality of embryos were not significantly different in both groups. Our results indicated a significant relationship between the level of AMH and the number of retrieved oocytes and embryos. We found there is a significant correlation between cholesterol level and number of MI oocytes.


Author(s):  
Soulmaz Shorakae ◽  
Eveline Jona ◽  
Courten Barbora de ◽  
Gavin Lambert ◽  
Elisabeth Lambert ◽  
...  

Nutrients ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 2494
Author(s):  
Małgorzata Kałużna ◽  
Magdalena Czlapka-Matyasik ◽  
Aleksandra Bykowska-Derda ◽  
Jerzy Moczko ◽  
Marek Ruchala ◽  
...  

Visceral adipose tissue (VAT) accumulation, is a part of a polycystic ovary syndrome (PCOS) phenotype. Dual-energy x-ray absorptiometry (DXA) provides a gold standard measurement of VAT. This study aimed to compare ten different indirect methods of VAT estimation in PCOS women. The study included 154 PCOS and 68 age- and BMI-matched control women. Subjects were divided into age groups: 18–30 y.o. and 30–40 y.o. Analysis included: body mass index (BMI), waist circumference (WC), waist-to-hip ratio (WHR), waist-to-height ratio (WHtR), waist/height 0.5 (WHT.5R), visceral adipose index (VAI), lipid accumulation product (LAP), and fat mass index (FMI). VAT accumulation, android-to-gynoid ratio (A/G), and total body fat (TBF) was measured by DXA. ROC analysis revealed that WHtR, WHT.5R, WC, BMI, and LAP demonstrated the highest predictive value in identifying VAT in the PCOS group. Lower cut-off values of BMI (23.43 kg/m2) and WHtR (0.45) were determined in the younger PCOS group and higher thresholds of WHtR (0.52) in the older PCOS group than commonly used. Measuring either: WHtR, WHT.5R, WC, BMI, or LAP, could help identify a subgroup of PCOS patients at high cardiometabolic risk. The current observations reinforce the importance of using special cut-offs to identify VAT, dependent on age and PCOS presence.


2019 ◽  
Vol 104 (9) ◽  
pp. 3835-3850 ◽  
Author(s):  
Matthew Dapas ◽  
Ryan Sisk ◽  
Richard S Legro ◽  
Margrit Urbanek ◽  
Andrea Dunaif ◽  
...  

AbstractContextPolycystic ovary syndrome (PCOS) is among the most common endocrine disorders of premenopausal women, affecting 5% to15% of this population depending on the diagnostic criteria applied. It is characterized by hyperandrogenism, ovulatory dysfunction, and polycystic ovarian morphology. PCOS is highly heritable, but only a small proportion of this heritability can be accounted for by the common genetic susceptibility variants identified to date.ObjectiveThe objective of this study was to test whether rare genetic variants contribute to PCOS pathogenesis.Design, Patients, and MethodsWe performed whole-genome sequencing on DNA from 261 individuals from 62 families with one or more daughters with PCOS. We tested for associations of rare variants with PCOS and its concomitant hormonal traits using a quantitative trait meta-analysis.ResultsWe found rare variants in DENND1A (P = 5.31 × 10−5, adjusted P = 0.039) that were significantly associated with reproductive and metabolic traits in PCOS families.ConclusionsCommon variants in DENND1A have previously been associated with PCOS diagnosis in genome-wide association studies. Subsequent studies indicated that DENND1A is an important regulator of human ovarian androgen biosynthesis. Our findings provide additional evidence that DENND1A plays a central role in PCOS and suggest that rare noncoding variants contribute to disease pathogenesis.


Author(s):  
Ewa Rzońca ◽  
Agnieszka Bień ◽  
Artur Wdowiak ◽  
Ryszard Szymański ◽  
Grażyna Iwanowicz-Palus

Sign in / Sign up

Export Citation Format

Share Document