Using Managed Pressure Drilling Equipment to Troubleshoot Well Control Issues with Total Lost Circulation and Ballooning on A Semisubmersible Rig

2021 ◽  
Author(s):  
Harpreet Kaur Dalgit Singh ◽  
Ho Ching Shearn ◽  
Bao Ta Quoc ◽  
Dien Nguyen Van

Abstract When drilling from a deepwater semisubmersible rig, the operator encountered wells problems, including lost circulation, influxes, and ballooning, in the 14 3/4-in. hole section. Managed Pressure Drilling (MPD) equipment that helped to mitigate these issues specifically, when stripping in the hole with the bottom hole assembly through the Rotating Control Device (RCD) bearing assembly while managing surge and swab pressures, monitoring the well while displacing heavy mud into the open hole, conditioning the contaminated mud, removing gas from the well, and fingerprinting the flow back to verify ballooning against influxes, and finally stripping out of the hole. The operator experienced a total loss of circulation at the 16-in. liner shoe at 1,633m while drilling the 14 3/4-in. hole section. Several lost-circulation material (LCM) pills of different weights were pumped to cure the losses without success. Then the well was flow-checked, the gain was noted, and the well shut-in. Having the MPD chokes and the Coriolis flowmeter in place made it possible to adjust the surface back pressure (SBP) accordingly within a small operating window. As a result, the operator could achieve the key objectives of stripping the drillstring in the hole, stripping out of the hole, and rolling over to spot 1.88SG heavy mud on the bottom using the pump and pull method. After LCM was pumped and a hesitation squeeze performed, well operations were stabilized, and the casing was run to a 2,111m measured depth. Advanced flow monitoring enabled the MPD to determine the required SBP for balancing the well. MPD applied 60psi of SBP and noted a gain of 8.3bbl/hr from the flowmeter. Next, MPD applied 65psi SBP and the well was static. Then, MPD applied 70psi SBP, and the well took losses at a rate of 19bbl/hr. MPD allowed to successfully strip the BHA in the hole through the RCD bearing assembly to the shoe. Correct string displacement observed via the MPD Virtual Trip Tank, achieved by adjusting the SBP from 62psi to 125psi. The closed-loop circulating system enabled safely circulating and conditioning contaminated gas-cut mud in the hole back to homogeneous mud. MPD reduced SBP incrementally and fingerprinted flow back at every step to give assurance that well ballooning, and not influxes, caused the flow back. Dynamically adjusting SBP, coupled with advanced monitoring of the returns flow using the Coriolis flowmeter, enabled balancing the well despite the challenges of a mixed mud gradient in the annulus and a narrow operational window. The MPD riser consisted of an RCD below-tension-ring (BTR)-s, flow spool, and top and bottom crossovers. Rig modifications involved fabricating the fixed piping to allow integrating MPD equipment with the rig system.

Author(s):  
Majeed Abimbola ◽  
Faisal Khan ◽  
Vikram Garaniya ◽  
Stephen Butt

As the cost of drilling and completion of offshore well is soaring, efforts are required for better well planning. Safety is to be given the highest priority over all other aspects of well planning. Among different element of drilling, well control is one of the most critical components for the safety of the operation, employees and the environment. Primary well control is ensured by keeping the hydrostatic pressure of the mud above the pore pressure across an open hole section. A loss of well control implies an influx of formation fluid into the wellbore which can culminate to a blowout if uncontrollable. Among the factors that contribute to a blowout are: stuck pipe, casing failure, swabbing, cementing, equipment failure and drilling into other well. Swabbing often occurs during tripping out of an open hole. In this study, investigations of the effects of tripping operation on primary well control are conducted. Failure scenarios of tripping operations in conventional overbalanced drilling and managed pressure drilling are studied using fault tree analysis. These scenarios are subsequently mapped into Bayesian Networks to overcome fault tree modelling limitations such s dependability assessment and common cause failure. The analysis of the BN models identified RCD failure, BHP reduction due to insufficient mud density and lost circulation, DAPC integrated control system, DAPC choke manifold, DAPC back pressure pump, and human error as critical elements in the loss of well control through tripping out operation.


2021 ◽  
Author(s):  
Cesar Orta ◽  
Mohanad Al Faqih ◽  
Bader Al Gharibi ◽  
Mohammed Al Shabibi ◽  
Ali El Khouly ◽  
...  

Abstract Drilling with a gas cap over the Natih formation in Oman often results in excessive flat time. Using the current dynamic fill equipment to deal with kick and loss scenarios leads to extensive nonproductive time on the rig. Managed pressure drilling (MPD) is a well-established drilling technology, and diverse variants exist to suit different requirements. All those variants use the rotating control device (RCD) as a common piece of equipment, but their procedures are different. The pressurized mud-cap drilling (PMCD) technique in the Natih formation replaces the need for traditional dynamic filling technology. The PMCD application enhances the drilling and completion processes by reducing flat time when total downhole losses are experienced. This paper elaborates on PMCD as a proven drilling technique in total loss scenarios when drilling with it for the first time in the Natih formation in Oman. It describes the PMCD process, the associated equipment, and the results of the inaugural application in the Qalah field.


2021 ◽  
Author(s):  
David Salinas Sanchez ◽  
Mario Noguez Lugo ◽  
Oscar Zamora Torres ◽  
Cuauhtemoc Cruz Castillo ◽  
Moises Muñoz Rivera ◽  
...  

Abstract A 7-in. liner was successfully cemented in the south east region of Mexico at 7530 m MD despite significant pressure and temperature challenges. The entire 1,370-m, 8.5" open hole section needed cement coverage and isolation to test several intervals. The challenge of the ultranarrow working pressure window was overcome by using managed pressure cementing (MPC) along with lost circulation solutions for the cement slurry and spacer. Due to the narrow pressure window (0.05 g/cc density gradient), mud losses could not be avoided during the cementing job. To limit and manage losses, an MPC placement technique was proposed, in conjunction with using lost circulation fiber technology in the cement slurry and spacer. After addressing the losses and narrow working pressure window, the next main challenge was the extremely high temperature (Bottom hole static temperature of 171°C). Extensive lab testing provided the fluid solution: HT formulations for cement slurry and spacer to maintain stability and rheology for placement and management of equivalent circulating density and set cement properties for long-term zonal isolation. After the liner was run to bottom, the mud density was homogenized from 1.40 g/cc to 1.30 g/cc (pore pressure: 1.38 g/cc). During this process, 32.5 m3 of mud was lost to the formation. During the previous circulation, the backpressure required to maintain the equivalent circulation density (ECD) above pore pressure, which was calculated and validated resulting in 1,100 psi annulus surface pressure (close to the limit of the equipment capacity) during the stopping time. The cementing job was pumped flawlessly with only 10 m3 of mud loss at the end of the job. During reverse circulation, contaminated spacer at surface indicated no cementing fluid had been lost to the formation and adequate open-hole coverage. The liner was successfully pressure tested to 4,500 psi, and cement logs showed that the cement had covered the open hole completely. MPC is not a conventional cementing technique. After the successful result on this job and subsequent operations, this technique is now being adopted to optimize cementing in even deeper wells in Mexico, where losses during cementing operations in the past had modified or limited the whole well construction and designed completion, and production of the well.


2021 ◽  
Author(s):  
Harpreet Kaur Dalgit Singh ◽  
Bao Ta Quoc ◽  
Benny Benny ◽  
Ching Shearn Ho

Abstract With the many challenges associated with Deepwater Drilling, Managed Pressure Drilling has proven to be a very useful tool to mitigate many hurdles. Client approached Managed Pressure Drilling technology to drill Myanmar's first MPD well on a Deepwater exploration well. The well was drilled with a Below Tension Ring-Slim Rotating Control Device (BTR-S RCD) and Automated MPD Choke System installed on semi-submersible rig, Noble Clyde Boudreaux (NCB). The paper will detail MPD objectives, application and well challenges, in conjunction with pore pressure prediction to manage the bottom hole pressure to drill to well total depth safely and efficiently. This exploration well was drilled from a water depth of 590m from a Semisubmersible rig required MPD application for its exploratory drilling due to uncertainties of drilling window which contained a sharp pressure ramp, with a history of well bore ballooning there was high potential to encounter gas in the riser. The Deepwater MPD package integrated with the rig system, offered a safer approach to overcome the challenges by enhanced influx monitoring and applying surface back pressure (SBP) to adjust bottom hole pressures as required. Additionally, modified pore pressure hunting method was incorporated to the drilling operation to allow more accurate pore pressure prediction, which was then applied to determine the required SBP in order to maintain the desired minimum overbalance while drilling ahead. The closed loop MPD circulating system allowed to divert returns from the well, through MPD flow spool into MPD distribution manifold and MPD automated choke manifold system to the shakers and rig mud gas separator (MGS). The automated MPD system allows control and adjustments of surface back pressure to control bottom hole pressure. MPD technology was applied with minimal overbalance on drilling and connections while monitoring on background gases. A refined pore pressure hunting method was introduced with manipulation of applied surface back pressure to define this exploration well pore pressure and drilling window. The applied MPD Deepwater technique proved for cost efficiency and rig days to allow two deeper casing setting depths and eliminating requirement to run contingency liners. MPD system and equipment is proving to be a requirement for Deepwater drilling for optimizing drilling efficiency. This paper will also capture detailed lesson learned from the operations as part of continuous learning for improvement on Deepwater MPD drilling.


2021 ◽  
Author(s):  
Louis Frederic Antoine Champain ◽  
Syed Zahoor Ullah ◽  
Alexey Ruzhnikov

Abstract Drilling and completion of the surface and intermediate sections in some fields is extremely challenging due to wellbore instability, especially accomplished with complete losses. Such circumstances lead to several time-consuming stuck pipe events, when existing standard ways of drilling did not lead to a permanent resolution of the problems. After exhausting the available conventional techniques without sustainable success, unorthodox solutions were required to justify the well delivery time and cost. Here comes the Casing While Drilling (CwD), being the most time and cost-effective solution to wellbore instability. CwD is introduced at full throttle aiming at the well cost reduction and well quality improvement. The implementation plan was divided in three phases. The first phase was a remedial solution to surface and intermediate sections drilling and casing off to prevent stuck pipe events and provide smooth well delivery performances. After successful implementation of CwD first phase, CwD was taken to the next level by shifting it from a mitigation to an optimization measure. Each step of CwD shoe-to-shoe operations was analysed to improve its performances: drill-out (D/O) of 18⅝-in shoe track with CwD, optimum drilling parameters per formation and CwD bit design. Implemented in 19 wells, CwD shoe-to-shoe performances have been brought up or even above standard rotary bottom hole assembly (BHA) benchmark. Planning for third phase is undergoing whereby CwD is aiming to optimize a well construction to reduce well delivery time, by combining surface and intermediate sections thus eliminating one casing string. Numerous challenges are being worked on including open hole (OH) isolation packer which conform to and seal with the borehole uneven surface. Special "for purpose built" expandable steel packer and stage tool have been manufactured and qualified for the specific application. A candidate well has been chosen and agreed for first trial. The key areas of improvement include, drilling and casing off the surface and intermediate sections while competing with standard rotary BHA performances and slimming down the well profile towards tremendous time and costs savings. This paper encompasses details of constructions of various wells with sufficient contingencies to combat any expected hole problems without compromising the well quality while keeping the well within budget and planned time. It also provides an analysis of the well trials that were executed during the implementation of first and second phases of CwD implementation and the captured lessons learnt which are being carried forward to the next phase. This paper provides the technique on how CwD can be used to help with three aspects of drilling, successfully mitigating holes problems by reducing OH exposure time and to eliminate drill string tripping and modifying conventional casing design to reduce well time and cost by eliminating one casing string.


2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
Liang Ge ◽  
Ze Hu ◽  
Ping Chen ◽  
Lei Shi ◽  
Qing Yang ◽  
...  

The flow rate variation of the drilling fluid and micro-overflow loss is difficult to analyze. The purpose to prevent the occurrence of kick, lost circulation, and other complex conditions is not easy to be achieved. Therefore, the microflow-induced annulus multiphase flow rate and annulus pressure field model were studied, and a downhole microflow measurement system has been developed. A differential pressure type flow measurement was used in the system, and real-time downhole information was obtained to achieve deep, narrow windows and other safety-density complex formation security. This paper introduced a new bottom-hole flow meter which can measure the annular flux while drilling and monitor overflow and circulation loss. The accuracy and reliability of the MPD (managed pressure drilling) system can be improved obviously by applying the device; as a result, the safety of drilling is enhanced and the cost is reduced.


2021 ◽  
Author(s):  
Beau R Wright ◽  
Parvez Khan

Abstract Open hole Multistage Fracturing (MSF) systems have been deployed for treating open hole formations with multiple, high rate hydraulic fracturing stages while gaining efficiency during pumping operations unlike traditional plug-and-perf operations. One important challenge within the industry was availability of an open hole packer system that can overcome tough wellbore conditions during deployment and function as designed during the high rate high pressure stimulation operations. This paper will discuss the successful planning and deployment of one such system. For successful deployment of any open hole fracturing completion, one must first consider the environment that the system will be deployed into. Lateral length, open hole size, parent casing size and tubing stresses during fracturing and production all inclusively influence the need for a robust and reliable system. Other several important considerations to be deployed as a liner is the compatibility of the completion tools with the Liner deployment system, the robustness of being deployed into challenging open hole conditions where capability of high circulating rates and rotation become mandatory to get the bottom hole assembly (BHA) to its final setting depth. Last but not least, in order to achieve successful stimulation, each component of the system after overcoming all the deployment obstacles should function as designed withstanding treating differentials as high as 15kpsi, while simultaneously accommodating induced axial loads caused by these high-pressure treatments. The development and testing of individual components of the system was done keeping in mind wellbore instability and obstacles the completion will have to overcome during deployment. The field execution was planned with close collaboration with the operator and other key services that were involved for drilling the well. Real-time monitoring of the well allowed for simultaneous swift implementation of changes required on tool activation pressures, identification of hazards and mitigation plan to overcome challenges in order to execute the job successfully. It is worth mentioning that the successful deployment of this system represents the first use of additive manufacturing in high pressure, hydraulic set open hole packers. This technology allowed overcoming the barriers of challenges associated with deploying open hole completion in tight challenging formations that would otherwise have limited deployment capabilities.


2021 ◽  
Author(s):  
Chih-Cheng Lin ◽  
Andrew G. Tallin ◽  
Xueyong Guan ◽  
Jiten D. Kaura ◽  
Sasha F. Luces ◽  
...  

Abstract One of the major technical challenges to this project was placing horizontal open hole gravel packs (HzOHGP) within the narrow pore pressure to frac-gradient (PPFG) margin in the target reservoirs. This paper addresses the steps taken to overcome this challenge. To maximize the use of the narrow PPFG margin, the project combined a managed pressure drilling (MPD) system with low gravel placement pump rates made possible by an ultra-light-weight proppant (ULWP).  Of the MPD systems available, the Controlled Mud Level (CML) system was selected over the Surface Back Pressure (SBP) system for several reasons. It enabled conventional gravel pack pumping operations and equipment and it accommodated the brine weight needed to inhibit the shales. A series of lab tests showed that the completion fluid density required to inhibit the reservoir shale reactivity was only possible using CML. An overall evaluation of CML showed that it was most suitable and offered the greatest flexibility for the gravel pack job design. The special ceramic ULWP had to be qualified and tested.  The qualification testing ranged from standard API and compatibility tests to full scale flow loop testing. The flow loop tests were needed to measure the ULWP transport velocity for the target wellbore geometry. Understanding the transport velocity is critical for gravel pack design and job execution planning. Once MPD and ceramic ULWP were selected, the gravel pack placement operations were simulated to demonstrate that their features increased the likelihood of successfully gravel packing in the target reservoirs.  Small PPFG margins decrease the probability of success of placing a HzOHGP.  In the target formations, the pressure margin is insufficient to safely execute HzOHGP conventionally; instead, the project combined MPD and the low pump rates facilitated by using ULWP to control circulating pressures to stay inside the narrow margin and place the gravel packs. The integration of CML and ULWP into in a gravel pack operation to control circulating pressures has never been done. The concept and its successful field implementation are industry firsts.


Sign in / Sign up

Export Citation Format

Share Document