An image super-resolution method for better cognition of images in cognition computing system

2020 ◽  
Vol 39 (6) ◽  
pp. 8043-8055
Author(s):  
Lihui Chen ◽  
Rongzhu Zhang ◽  
Awais Ahmad ◽  
Gwanggil Jeon ◽  
Xiaomin Yang

Data cognition plays an important role in cognitive computing. Cognition of low-resolution (LR) image is a long-stand problem because LR images have insufficient information about objects. For better cognition of LR images, a multi-resolution residual network (MRRN) is proposed to improve image resolution in this paper for cognitive computing systems. In MRRN, a multi-resolution feature learning (MRFL) strategy is introduced to achieve satisfying performance with low computational costs. Inspired by image pyramids, a feature pyramid is designed to implement multi-resolution feature learning in the building unit of the proposed MRRN. Specifically, multi-resolution residual units (MRRUs) are introduced as the building units of the proposed network, which consist of a feature pyramid decomposition stage and a feature reconstruction stage. To obtain informative features, transferred skip links (TSLs) are utilized to transfer fine-grain residual features in the pyramid decomposition stage to the reconstruction stage. The effectiveness of MRFL and TSL is demonstrated by ablation experiments. Also, the tests on standard benchmarks indicate the superiority of the proposed MRRN over other state-of-the-art methods.

Life ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 310
Author(s):  
Shih-Chia Chang ◽  
Ming-Tsang Lu ◽  
Tzu-Hui Pan ◽  
Chiao-Shan Chen

Although the electronic health (e-health) cloud computing system is a promising innovation, its adoption in the healthcare industry has been slow. This study investigated the adoption of e-health cloud computing systems in the healthcare industry and considered security functions, management, cloud service delivery, and cloud software for e-health cloud computing systems. Although numerous studies have determined factors affecting e-health cloud computing systems, few comprehensive reviews of factors and their relations have been conducted. Therefore, this study investigated the relations between the factors affecting e-health cloud computing systems by using a multiple criteria decision-making technique, in which decision-making trial and evaluation laboratory (DEMATEL), DANP (DEMATEL-based Analytic Network Process), and modified VIKOR (VlseKriterijumska Optimizacija I Kompromisno Resenje) approaches were combined. The intended level of adoption of an e-health cloud computing system could be determined by using the proposed approach. The results of a case study performed on the Taiwanese healthcare industry indicated that the cloud management function must be primarily enhanced and that cost effectiveness is the most significant factor in the adoption of e-health cloud computing. This result is valuable for allocating resources to decrease performance gaps in the Taiwanese healthcare industry.


2021 ◽  
Vol 11 (12) ◽  
pp. 5458
Author(s):  
Sangjun Kim ◽  
Kyung-Joon Park

A cyber-physical system (CPS) is the integration of a physical system into the real world and control applications in a computing system, interacting through a communications network. Network technology connecting physical systems and computing systems enables the simultaneous control of many physical systems and provides intelligent applications for them. However, enhancing connectivity leads to extended attack vectors in which attackers can trespass on the network and launch cyber-physical attacks, remotely disrupting the CPS. Therefore, extensive studies into cyber-physical security are being conducted in various domains, such as physical, network, and computing systems. Moreover, large-scale and complex CPSs make it difficult to analyze and detect cyber-physical attacks, and thus, machine learning (ML) techniques have recently been adopted for cyber-physical security. In this survey, we provide an extensive review of the threats and ML-based security designs for CPSs. First, we present a CPS structure that classifies the functions of the CPS into three layers: the physical system, the network, and software applications. Then, we discuss the taxonomy of cyber-physical attacks on each layer, and in particular, we analyze attacks based on the dynamics of the physical system. We review existing studies on detecting cyber-physical attacks with various ML techniques from the perspectives of the physical system, the network, and the computing system. Furthermore, we discuss future research directions for ML-based cyber-physical security research in the context of real-time constraints, resiliency, and dataset generation to learn about the possible attacks.


2021 ◽  
Vol 13 (9) ◽  
pp. 1854
Author(s):  
Syed Muhammad Arsalan Bashir ◽  
Yi Wang

This paper deals with detecting small objects in remote sensing images from satellites or any aerial vehicle by utilizing the concept of image super-resolution for image resolution enhancement using a deep-learning-based detection method. This paper provides a rationale for image super-resolution for small objects by improving the current super-resolution (SR) framework by incorporating a cyclic generative adversarial network (GAN) and residual feature aggregation (RFA) to improve detection performance. The novelty of the method is threefold: first, a framework is proposed, independent of the final object detector used in research, i.e., YOLOv3 could be replaced with Faster R-CNN or any object detector to perform object detection; second, a residual feature aggregation network was used in the generator, which significantly improved the detection performance as the RFA network detected complex features; and third, the whole network was transformed into a cyclic GAN. The image super-resolution cyclic GAN with RFA and YOLO as the detection network is termed as SRCGAN-RFA-YOLO, which is compared with the detection accuracies of other methods. Rigorous experiments on both satellite images and aerial images (ISPRS Potsdam, VAID, and Draper Satellite Image Chronology datasets) were performed, and the results showed that the detection performance increased by using super-resolution methods for spatial resolution enhancement; for an IoU of 0.10, AP of 0.7867 was achieved for a scale factor of 16.


Author(s):  
VanDung Nguyen ◽  
Tran Trong Khanh ◽  
Tri D. T. Nguyen ◽  
Choong Seon Hong ◽  
Eui-Nam Huh

AbstractIn the Internet of Things (IoT) era, the capacity-limited Internet and uncontrollable service delays for various new applications, such as video streaming analysis and augmented reality, are challenges. Cloud computing systems, also known as a solution that offloads energy-consuming computation of IoT applications to a cloud server, cannot meet the delay-sensitive and context-aware service requirements. To address this issue, an edge computing system provides timely and context-aware services by bringing the computations and storage closer to the user. The dynamic flow of requests that can be efficiently processed is a significant challenge for edge and cloud computing systems. To improve the performance of IoT systems, the mobile edge orchestrator (MEO), which is an application placement controller, was designed by integrating end mobile devices with edge and cloud computing systems. In this paper, we propose a flexible computation offloading method in a fuzzy-based MEO for IoT applications in order to improve the efficiency in computational resource management. Considering the network, computation resources, and task requirements, a fuzzy-based MEO allows edge workload orchestration actions to decide whether to offload a mobile user to local edge, neighboring edge, or cloud servers. Additionally, increasing packet sizes will affect the failed-task ratio when the number of mobile devices increases. To reduce failed tasks because of transmission collisions and to improve service times for time-critical tasks, we define a new input crisp value, and a new output decision for a fuzzy-based MEO. Using the EdgeCloudSim simulator, we evaluate our proposal with four benchmark algorithms in augmented reality, healthcare, compute-intensive, and infotainment applications. Simulation results show that our proposal provides better results in terms of WLAN delay, service times, the number of failed tasks, and VM utilization.


Author(s):  
A. Valli Bhasha ◽  
B. D. Venkatramana Reddy

The image super-resolution methods with deep learning using Convolutional Neural Network (CNN) have been producing admirable advancements. The proposed image resolution model involves the following two main analyses: (i) analysis using Adaptive Discrete Wavelet Transform (ADWT) with Deep CNN and (ii) analysis using Non-negative Structured Sparse Representation (NSSR). The technique termed as NSSR is used to recover the high-resolution (HR) images from the low-resolution (LR) images. The experimental evaluation involves two phases: Training and Testing. In the training phase, the information regarding the residual images of the dataset are trained using the optimized Deep CNN. On the other hand, the testing phase helps to generate the super resolution image using the HR wavelet subbands (HRSB) and residual images. As the main novelty, the filter coefficients of DWT are optimized by the hybrid Fire Fly-based Spotted Hyena Optimization (FF-SHO) to develop ADWT. Finally, a valuable performance evaluation on the two benchmark hyperspectral image datasets confirms the effectiveness of the proposed model over the existing algorithms.


SIMULATION ◽  
1965 ◽  
Vol 4 (2) ◽  
pp. 104-116 ◽  
Author(s):  
Otto A. Reichardt ◽  
Merlin W. Hoyt ◽  
W. Thad Lee

TRICE hybrid computing systems are currently in volved in aerospace simulations that are interesting and sophisticated. Indeed it would seem that these applications are so successful that an increasing wave of interest can be expected in such DDA applications. Unlike earlier DDA's, the parallel digital differential analyzer, we believe, combines more of the best fea tures of analog and digital machines: It boasts speed, accuracy, and ease of programming. Because the machine itself is entirely digital, it couples naturally and inexpensively with convention al digital computers. Unlike other digital machines with central memory and sequential operation, all elements of this DDA operate simultaneously, thus providing rapid solutions to nonlinear differential equations characteristic of analog computers. And like its analog cousin, our DDA is programmed read ily via a patchboard, by connecting its computing elements in direct correspondence to the elements of differential equations. In one sense, TRICE is more properly a hybrid— a unique combination of analog and digital machine characteristics—than are the combinations of analog and digital computers currently being interfaced. Yet it can also be connected with analog and/or digital computers. Here we would like to explain how TRICE works, compare its advantages as a hybrid element, and con clude with a review of some current applications.


Sign in / Sign up

Export Citation Format

Share Document