chromosome topology
Recently Published Documents


TOTAL DOCUMENTS

32
(FIVE YEARS 10)

H-INDEX

9
(FIVE YEARS 2)

mSystems ◽  
2021 ◽  
Author(s):  
Martyna Gongerowska-Jac ◽  
Marcin J. Szafran ◽  
Jakub Mikołajczyk ◽  
Justyna Szymczak ◽  
Magdalena Bartyńska ◽  
...  

Streptomyces microbes, soil bacteria with complex life cycle, are the producers of a broad range of biologically active compounds (e.g., antibiotics). Streptomyces bacteria respond to various environmental signals using a complex transcriptional regulation mechanism. Understanding regulation of their gene expression is crucial for Streptomyces application as industrial organisms.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Moritz Bauer ◽  
Enrique Vidal ◽  
Eduard Zorita ◽  
Nil Üresin ◽  
Stefan F. Pinter ◽  
...  

AbstractA hallmark of chromosome organization is the partition into transcriptionally active A and repressed B compartments, and into topologically associating domains (TADs). Both structures were regarded to be absent from the inactive mouse X chromosome, but to be re-established with transcriptional reactivation and chromatin opening during X-reactivation. Here, we combine a tailor-made mouse iPSC reprogramming system and high-resolution Hi-C to produce a time course combining gene reactivation, chromatin opening and chromosome topology during X-reactivation. Contrary to previous observations, we observe A/B-like compartments on the inactive X harbouring multiple subcompartments. While partial X-reactivation initiates within a compartment rich in X-inactivation escapees, it then occurs rapidly along the chromosome, concomitant with downregulation of Xist. Importantly, we find that TAD formation precedes transcription and initiates from Xist-poor compartments. Here, we show that TAD formation and transcriptional reactivation are causally independent during X-reactivation while establishing Xist as a common denominator.


2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Martyna Gongerowska-Jac ◽  
Marcin Jan Szafran ◽  
Dagmara Jakimowicz

Abstract Background Identifying the regulatory factors that control transcriptional activity is a major challenge of gene expression studies. Here, we describe the application of a novel approach for in vivo identification of regulatory proteins that may directly or indirectly control the transcription of a promoter of interest in Streptomyces. Results A method based on the combination of Tn5 minitransposon-driven random mutagenesis and lux reporter genes was applied for the first time for the Streptomyces genus. As a proof of concept, we studied the topA supercoiling-sensitive promoter, whose activity is dependent on unknown regulatory factors. We found that the sco4804 gene product positively influences topA transcription in S. coelicolor, demonstrating SCO4804 as a novel player in the control of chromosome topology in these bacteria. Conclusions Our approach allows the identification of novel Streptomyces regulators that may be critical for the regulation of gene expression in these antibiotic-producing bacteria.


2021 ◽  
Vol 8 ◽  
Author(s):  
Nikita Fernandes ◽  
J. Ross Buchan

RNA molecules are increasingly being identified as facilitating or impeding the interaction of proteins and nucleic acids, serving as so-called scaffolds or decoys. Long non-coding RNAs have been commonly implicated in such roles, particularly in the regulation of nuclear processes including chromosome topology, regulation of chromatin state and gene transcription, and assembly of nuclear biomolecular condensates such as paraspeckles. Recently, an increased awareness of cytoplasmic RNA scaffolds and decoys has begun to emerge, including the identification of non-coding regions of mRNAs that can also function in a scaffold-like manner to regulate interactions of nascently translated proteins. Collectively, cytoplasmic RNA scaffolds and decoys are now implicated in processes such as mRNA translation, decay, protein localization, protein degradation and assembly of cytoplasmic biomolecular condensates such as P-bodies. Here, we review examples of RNA scaffolds and decoys in both the nucleus and cytoplasm, illustrating common themes, the suitability of RNA to such roles, and future challenges in identifying and better understanding RNA scaffolding and decoy functions.


2021 ◽  
Author(s):  
Martyna Gongerowska-Jac ◽  
Marcin Jan Szafran ◽  
Dagmara Jakimowicz

Abstract BackgroundIdentifying the regulatory factors that control transcriptional activity is a major challenge of gene expression studies. Here, we describe the application of a novel approach for in vivo identification of regulatory proteins that may directly or indirectly control the transcription of a promoter of interest. ResultsA method based on the combination of Tn5 minitransposon-driven random mutagenesis and lux reporter genes was applied for the first time for the Streptomyces genus. As a proof of concept, we studied the topA supercoiling-sensitive promoter, whose activity is dependent on unknown regulatory factors. We found that the sco4804 gene product positively influences topA transcription in S. coelicolor, demonstrating SCO4804 as a novel player in the control of chromosome topology in these bacteria. ConclusionsOur approach allows the identification of novel Streptomyces regulators that may be critical for the regulation of gene expression in these antibiotic-producing bacteria.


2020 ◽  
Author(s):  
Ivelisse Cajigas ◽  
Abhijit Chakraborty ◽  
Madison Lynam ◽  
Kelsey R Swyter ◽  
Monique Bastidas ◽  
...  

SummaryPrecise regulation of gene expression networks requires the selective targeting of DNA enhancers. The Evf2 long non-coding RNA regulates Dlx5/6 ultraconserved enhancer(UCE) interactions with long-range target genes, controlling gene expression over a 27Mb region in mouse developing forebrain. Here, we show that Evf2 long range gene repression occurs through multi-step mechanisms involving the transcription factor Sox2, a component of the Evf2 ribonucleoprotein complex (RNP). Evf2 directly interacts with Sox2, antagonizing Sox2-dependent Dlx5/6UCE activation. Evf2 regulates Sox2 binding at key sites, including the Dlx5/6eii shadow enhancer and Dlx5/6UCE interaction sites. Evf2 differentially targets RNP-associated Sox2 protein pools (PPs), redirecting Sox2-PPs to one repressed gene at the expense of the other. Co-regulation of Dlx5/6UCEintrachromosomal interactions by Evf2 and Sox2 reveals a role for Sox2 in chromosome topology. We propose that RNA organizes RNPs in a subnuclear domain, regulating both long-range UCE targeting and activity through Sox2-RNP sequestration and recruitment.


Author(s):  
Moritz Bauer ◽  
Enrique Vidal ◽  
Eduard Zorita ◽  
Stefan F. Pinter ◽  
Guillaume J. Filion ◽  
...  

SummaryA hallmark of chromosome organization is the partition into transcriptionally active A and repressed B compartments and into topologically associating domains (TADs). Both structures were regarded absent from the inactive X chromosome, but to be re-established with transcriptional reactivation and chromatin opening during X-reactivation. Here, we combine a tailor-made mouse iPSC-reprogramming system and high-resolution Hi-C to produce the first time-course combining gene reactivation, chromatin opening and chromosome topology during X-reactivation. Contrary to previous observations, we uncover A/B-like compartments on the inactive X harboring multiple subcompartments. While partial X-reactivation initiates within a compartment rich in X-inactivation escapees, it then occurs rapidly along the chromosome, coinciding with acquisition of naive pluripotency, leading to downregulation of Xist. Importantly, we find that TAD formation precedes transcription, suggesting them to be causally independent. Instead, TADs form first within Xist-poor compartments, establishing Xist as common denominator, opposing both gene reactivation and TAD formation through separate mechanisms. Graphical Summary


2020 ◽  
Vol 77 (2) ◽  
pp. 279-293.e8 ◽  
Author(s):  
Adam W. Clemens ◽  
Dennis Y. Wu ◽  
J. Russell Moore ◽  
Diana L. Christian ◽  
Guoyan Zhao ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document