ductility trough
Recently Published Documents


TOTAL DOCUMENTS

17
(FIVE YEARS 5)

H-INDEX

4
(FIVE YEARS 1)

Metals ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 14
Author(s):  
Siying Song ◽  
Junyu Tian ◽  
Juan Xiao ◽  
Lei Fan ◽  
Yuebiao Yang ◽  
...  

Hot tensile tests were conducted in this study to investigate the effect of strain rate (10−3 and 10 s−1) and vanadium content (0.029 and 0.047 wt.%) on the hot ductility of low-carbon microalloyed steels. The results indicate that a hot ductility trough appears at a low strain rate (10−3 s−1) because of the sufficient time for ferrite transformation and the growth of second particles, but it disappears at a high strain rate (10 s−1). The hot ductility is improved with the increase in strain rate at 700 °C or higher temperatures. In addition, with the increase in vanadium content, the large amounts of precipitate and increased ferrite transformation result in poor hot ductility of steels fractured at a low temperature range (600~900 °C). However, when the steel is fractured at a high temperature range (1000~1200 °C), more vanadium in the solid solution in the austenite inhibits the growth of parental austenite grains and results in grain refinement strengthening, slightly improving the hot ductility.


Metals ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 821
Author(s):  
Guangkai Yang ◽  
Changling Zhuang ◽  
Changrong Li ◽  
Fangjie Lan ◽  
Hanjie Yao

In this study, high-temperature tensile tests were carried out on a Gleeble-3500 thermal simulator under a strain rate of ε = 1 × 10−3 s−1 in the temperature range of 600–1310 °C. The hot deformation process of Fe–15.3Mn–0.58C–2.3Al TWIP/TRIP at different temperatures was studied. In the whole tested temperature range, the reduction of area ranged from 47.3 to 89.4% and reached the maximum value of 89.4% at 1275 °C. Assuming that 60% reduction of area is relative ductility trough, the high-temperature ductility trough was from 1275 °C to the melting point temperature, the medium-temperature ductility trough was 1000–1250 °C, and the low-temperature ductility trough was around 600 °C. The phase transformation process of the steel was analyzed by Thermo-Calc thermodynamics software. It was found that ferrite transformation occurred at 646 °C, and the austenite was softened by a small amount of ferrite, resulting in the reduction of thermoplastic and formation of the low-temperature ductility trough. However, the small difference in thermoplasticity in the low-temperature ductility trough was attributed to the small amount of ferrite and the low transformation temperature of ferrite. The tensile fracture at different temperatures was characterized by means of optical microscopy and scanning electron microscopy. It was found that there were Al2O3, AlN, MnO, and MnS(Se) impurities in the fracture. The abnormal points of thermoplasticity showed that the inclusions had a significant effect on the high-temperature mechanical properties. The results of EBSD local orientation difference analysis showed that the temperature range with good plasticity was around 1275 °C. Under large deformation extent, the phase difference in the internal position of the grain was larger than that in the grain boundary. The defect density in the grain was large, and the high dislocation density was the main deformation mechanism in the high-temperature tensile process.


Metals ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 1679
Author(s):  
Chunyu He ◽  
Jianguang Wang ◽  
Yulai Chen ◽  
Wei Yu ◽  
Di Tang

Referencing the composition of a typical Nb+Ti microalloyed steel (Q345B), two kinds of steels, one microalloyed with Sn and Sb, and the other one only microalloyed with Sb were designed to study the effects of Sn and Sb on the hot ductility of Nb+Ti microalloyed steels. The Gleeble-3500 tester was adopted to determine the high-temperature mechanical properties of the two test steels. Fracture morphologies, microstructures and interior precipitation status were analyzed by SEM, CLSM (Confocal laser scanning microscope) and EDS, respectively. Results revealed that within the range of 950–650 °C, there existed the ductility trough for the two steels, which were mainly attributed to the precipitation of TiN and Nb (C, N). Additionally, precipitation of Sn and Sb were not observed in this research and the hot ductility was not affected by the addition of Sn and Sb, as compared with the Nb+Ti microalloyed steel. Therefore, addition of a small amount of Sn and Sb (≤0.05 wt.%) to the Nb+Ti microalloyed steel is favorable due to the improvement on corrosion resistance.


Metals ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 1598
Author(s):  
Yu Guo ◽  
Yu Zhao ◽  
Shenhua Song

Advanced SA508-4N RPV steel samples, unadded, P-added, and P+Ce-added, are investigated on their hot ductility behavior. Hot tensile tests are carried out in the temperature range of 750 to 1000 °C through a Gleeble 1500D machine. It is demonstrated that the deformation temperatures of all the three steels are located in the austenite single-phase region. There is no ductility trough present for the P+Ce-added steel, but the unadded one exhibits a deep ductility trough. The reduction of area (RA) of the former is always higher than 75% and increases with rising temperature until reaching ~95% at 900 °C or above, whereas the lowest RA value of the latter is only ~50% at 850 °C. Microanalysis indicates that the grain boundary segregation of P and Ce takes place in the tested P+Ce-added steel. This may restrain the boundary sliding so as to improve the hot ductility behavior of the steel. Furthermore, the addition of P and Ce is able to facilitate the occurrence of the dynamic recrystallization (DR) of the steel, lowering the initial temperature of DR from ~900 to ~850 °C and thereby enhancing the hot ductility performance. Consequently, the combined addition of P and Ce can significantly improve the hot ductility of SA508-4N RPV steel, thereby improving its continuous casting performance and hot workability.


Materials ◽  
2020 ◽  
Vol 13 (3) ◽  
pp. 539 ◽  
Author(s):  
Frédéric Christien

The role of impurity sulphur in the ductility trough of iron–nickel (Fe–Ni) alloys is investigated using hot tensile tests. A strong detrimental effect of some ppm levels of sulphur is demonstrated. In addition, it is shown that, in the ductility trough, material failure occurs through subcritical grain boundary crack propagation, involving dynamic embrittlement at the crack tip, due to the sulphur. Very high intergranular crack growth rates are observed. This is possible because plastic deformation accelerates the transport of sulphur to the crack tip, by several orders of magnitude, compared to normal bulk diffusion. The ductility is recovered at high strain rates, which correlates with a decrease in the sulphur concentration measured on the fracture surface. It is suggested that the main mechanism of sulphur transport is dragging by moving dislocations.


2018 ◽  
Vol 115 (4) ◽  
pp. 419 ◽  
Author(s):  
Wenbin Xin ◽  
Jing Zhang ◽  
Guoping Luo ◽  
Ruifen Wang ◽  
Qingyong Meng ◽  
...  

The effect of different Ce content on the hot ductility of C-Mn steel containing arsenic was investigated at the temperature ranging from 700 to 1100 °C conducting Gleebel-1500 thermal-mechanical simulator. The reduction of area (RA%) was used to evaluate the hot ductility. The 0.16 mass% As widened the ductility trough range and especially, decreased the RA value at 850–950 °C. Conversely, adding Ce in the steel could remedy the arsenic-induced hot ductility deterioration. Moreover, with the increase of Ce content from 0 to 0.035 mass%, the RA value at 800–950 °C significantly increased, compared to that of the arsenic steel. When the content of Ce reached 0.027–0.035 mass%, the RA value at 800–850 °C was even higher than that of steel without As. Besides, the corresponding fracture morphology was changed from intergranular feature to ductile and/or interdendritic feature. Grain refinement by Ce addition, the formation of arsenious rare earth inclusions and grain boundary segregation of Ce were considered to improve the hot ductility of the steel containing As.


2017 ◽  
Vol 70 (8) ◽  
pp. 2193-2204 ◽  
Author(s):  
M. A. Matveev ◽  
N. G. Kolbasnikov ◽  
A. A. Kononov

2016 ◽  
Vol 35 (6) ◽  
pp. 575-582 ◽  
Author(s):  
Jiasheng Qing ◽  
Lei Wang ◽  
Kun Dou ◽  
Bao Wang ◽  
Qing Liu

AbstractThe influence of V–N microalloying on the high-temperature mechanical behavior of high strength weathering steel is discussed through thermomechanical simulation experiment. The difference of tensile strength caused by variation of [%V][%N] appears after proeutectoid phase change, and the higher level of [%V][%N] is, the stronger the tensile strength tends to be. The ductility trough apparently becomes deeper and wider with the increase of [%V][%N]. When the level of [%V][%N] reaches to 1.7 × 10−3, high strength weathering steel shows almost similar reduction of area to 0.03% Nb-containing steel in the temperature range of 800–900℃, however, the ductility trough at the low-temperature stage is wider than that of Nb-containing steel. Moreover, the net crack defect of bloom is optimized through the stable control of N content in low range under the precondition of high strength weathering steel with sufficient strength.


2015 ◽  
Vol 34 (5) ◽  
Author(s):  
Hong-bing Peng ◽  
Wei-qing Chen ◽  
Lie Chen ◽  
Dong Guo

AbstractThe hot ductility of 20CrMnTi steel with different levels of Cu equivalent was investigated. The results show that Sn and Cu in 20CrMnTi steel are detrimental to its hot ductility. Sn was found to segregate to the boundaries tested by EPMA, moreover, Cu was not found to segregate to boundaries, however, the fracture morphology was examined with SEM and showed many small and shallow dimples on the fracture of steels with large Cu equivalent (>0.15) and fine copper sulfide was found from carbon extraction replicas using TEM. The adverse effect of large Cu equivalent (>0.15) on the hot ductility was due to Sn segregation and fine copper sulfide in the steel as well as their retarding the occurrence of dynamic recrystallization (DRX). The proeutectoid ferrite film precipitating along the austenite grain boundary causes the ductility trough of the five examined steels. Moreover, in this case, the level of Cu equivalent should be controlled below 0.15, which would not deteriorate the hot ductility significantly.


Sign in / Sign up

Export Citation Format

Share Document