Causes of High Temperature Ductility Trough of Microalloyed Steels

2017 ◽  
Vol 70 (8) ◽  
pp. 2193-2204 ◽  
Author(s):  
M. A. Matveev ◽  
N. G. Kolbasnikov ◽  
A. A. Kononov
Metals ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 1679
Author(s):  
Chunyu He ◽  
Jianguang Wang ◽  
Yulai Chen ◽  
Wei Yu ◽  
Di Tang

Referencing the composition of a typical Nb+Ti microalloyed steel (Q345B), two kinds of steels, one microalloyed with Sn and Sb, and the other one only microalloyed with Sb were designed to study the effects of Sn and Sb on the hot ductility of Nb+Ti microalloyed steels. The Gleeble-3500 tester was adopted to determine the high-temperature mechanical properties of the two test steels. Fracture morphologies, microstructures and interior precipitation status were analyzed by SEM, CLSM (Confocal laser scanning microscope) and EDS, respectively. Results revealed that within the range of 950–650 °C, there existed the ductility trough for the two steels, which were mainly attributed to the precipitation of TiN and Nb (C, N). Additionally, precipitation of Sn and Sb were not observed in this research and the hot ductility was not affected by the addition of Sn and Sb, as compared with the Nb+Ti microalloyed steel. Therefore, addition of a small amount of Sn and Sb (≤0.05 wt.%) to the Nb+Ti microalloyed steel is favorable due to the improvement on corrosion resistance.


2021 ◽  
pp. 54-60
Author(s):  
S. E. Krylova ◽  
◽  
E. V. Romashkov ◽  

The influence of heat treatment parameters on the structure and properties of the promising 70Cr3Mn2WTiB die steel, which is offered for the manufacture of mold parts for aluminum alloy injection molding machines, is revealed. A rational mode of thermal hardening is recommended for the developed steel, including spheroidizing annealing at a temperature of 780 °C with combined cooling; quenching at 1000 °C with oil cooling; high-temperature tempering at 550–600 °C with cooling in calm air. The structure formation and behavior of carbide phases in microalloyed steels at various stages of heat treatment are evaluated. The features of phase transformations and the mechanism of dispersion hardening during high-temperature tempering that provide the required set of mechanical and technological properties are determined. The influence of heat treatment modes on mechanical and operational properties under cyclic loading and heat exposure at normal and elevated temperatures is evaluated. Fractographic studies of zones of cyclic and static crack growth in fractures of samples after testing for crack resistance under cyclic and static loading were performed. The main regularities of changes in the thermal structural stability of chromium steels under cyclic temperature and force influences, depending on the nature of alloying and heat treatment modes, are substantiated, which made it possible to reasonably recommend the developed 70Cr3Mn2WTiB steel for implementation.


Author(s):  
Utkudeniz Ozturk ◽  
Jose Maria Cabrera ◽  
Jessica Calvo

The microstructural evolution of Inconel 718Plus during hot forming operations is modeled through a physically based model which includes the effects of precipitating particles. Inconel 718Plus has been a successful alloy since its introduction in 2003 owing to its moderate cost, good formability and weldability, and its higher maximum service temperature compared to its ancestor, Inconel 718. It is well known that the service performance and hot-flow characteristics of this alloy are strongly dependent on the microstructure, particularly the grain size. Thus, comprehension of the microstructural evolution and its modeling is an important task. In precipitation hardening superalloys and microalloyed steels, it is particularly more challenging to model the microstructural evolution in the processing windows where material softening and precipitation processes take place concurrently. The model presented in this work is based on dislocation density evolution which is considered as a result of the competition between dislocation generation and dynamic recovery at the early stages of deformation. In the hardening region, recovery through climb is described by the diffusion of vacancies and glide is assumed to be proportional to the strain rate in accordance with the models proposed by Bergstrom. Since the deformation is assumed to be controlled by glide and climb, the peak stress is modeled based on a modified hyperbolic-sine model which takes into account the temperature dependence of self-diffusion of Nickel and elastic modulus. It is known that under high temperature deformation conditions Inconel 718Plus may undergo dynamic precipitation. Second-phase particles in the material may impede the grain boundary motion and contribute to an increase in flow-stress due to Orowan looping. To account for the dynamic precipitation, the present model combines previously obtained experimental results and precipitation models to predict volume fraction and particle radius. For the peak stress modeling, the effect of precipitation is expressed as an extra stress term. The flow stress is calculated for the deformed and the recrystallized material separately and the total flow stress for the material is calculated using a law of mixtures considering the fraction of recrystallized material, while recrystallization is described as a nucleation-growth process via Avrami formalism. Cylindrical compression tests were employed to observe the hot flow behavior and validate the model. The predictions are compared with the experimental findings and good agreement is observed.


2009 ◽  
Vol 23 (06n07) ◽  
pp. 1122-1128 ◽  
Author(s):  
SUJUAN ZHAO ◽  
QINGFENG WANG ◽  
ZESHENG YAN

The current study aims to estimate the influence of enhanced nitrogen on the hot ductility of medium carbon microalloyed steel. For this purpose, hot tensile tests were carried out at temperatures rangeing from 700°C-1000°C at a true strain rate of 0.001s-1. The fracture surfaces and their neighboring precipitates and matrix microstructures "frozen" in tensile temperatures were observed. The dependence of hot ductility on the fracture mode and in situ microstructural changes were discussed. The results indicate that raising the nitrogen content from 0.003% to 0.014% and 0.021% was found to deteriorate the ductility as the obtained ductility trough became deeper and wider. The trough deepening caused by the addition of nitrogen was due to the formation of film-like ferrite and fine VN precipitation along the austenite grain boundaries promoting low ductility intergranular failure. On the other hand, the retarded dynamic recrystallization, the promoted deformation induced ferrite formation and precipitation at higher temperatures by enhanced nitrogen were regarded as the possible reasons for a wider trough. In summary, the above results indicate the hot ductility of medium carbon microalloyed steels is weakened to some extent by enhanced nitrogen and their windows suitable for continuous casting should be schemed very carefully.


Metals ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 821
Author(s):  
Guangkai Yang ◽  
Changling Zhuang ◽  
Changrong Li ◽  
Fangjie Lan ◽  
Hanjie Yao

In this study, high-temperature tensile tests were carried out on a Gleeble-3500 thermal simulator under a strain rate of ε = 1 × 10−3 s−1 in the temperature range of 600–1310 °C. The hot deformation process of Fe–15.3Mn–0.58C–2.3Al TWIP/TRIP at different temperatures was studied. In the whole tested temperature range, the reduction of area ranged from 47.3 to 89.4% and reached the maximum value of 89.4% at 1275 °C. Assuming that 60% reduction of area is relative ductility trough, the high-temperature ductility trough was from 1275 °C to the melting point temperature, the medium-temperature ductility trough was 1000–1250 °C, and the low-temperature ductility trough was around 600 °C. The phase transformation process of the steel was analyzed by Thermo-Calc thermodynamics software. It was found that ferrite transformation occurred at 646 °C, and the austenite was softened by a small amount of ferrite, resulting in the reduction of thermoplastic and formation of the low-temperature ductility trough. However, the small difference in thermoplasticity in the low-temperature ductility trough was attributed to the small amount of ferrite and the low transformation temperature of ferrite. The tensile fracture at different temperatures was characterized by means of optical microscopy and scanning electron microscopy. It was found that there were Al2O3, AlN, MnO, and MnS(Se) impurities in the fracture. The abnormal points of thermoplasticity showed that the inclusions had a significant effect on the high-temperature mechanical properties. The results of EBSD local orientation difference analysis showed that the temperature range with good plasticity was around 1275 °C. Under large deformation extent, the phase difference in the internal position of the grain was larger than that in the grain boundary. The defect density in the grain was large, and the high dislocation density was the main deformation mechanism in the high-temperature tensile process.


2020 ◽  
Vol 29 (1) ◽  
pp. 330-341
Author(s):  
S. A. J. Chalimba ◽  
R. J. Mostert ◽  
W. E. Stumpf ◽  
C. W. Siyasiya ◽  
K. M. Banks

2016 ◽  
Vol 35 (6) ◽  
pp. 575-582 ◽  
Author(s):  
Jiasheng Qing ◽  
Lei Wang ◽  
Kun Dou ◽  
Bao Wang ◽  
Qing Liu

AbstractThe influence of V–N microalloying on the high-temperature mechanical behavior of high strength weathering steel is discussed through thermomechanical simulation experiment. The difference of tensile strength caused by variation of [%V][%N] appears after proeutectoid phase change, and the higher level of [%V][%N] is, the stronger the tensile strength tends to be. The ductility trough apparently becomes deeper and wider with the increase of [%V][%N]. When the level of [%V][%N] reaches to 1.7 × 10−3, high strength weathering steel shows almost similar reduction of area to 0.03% Nb-containing steel in the temperature range of 800–900℃, however, the ductility trough at the low-temperature stage is wider than that of Nb-containing steel. Moreover, the net crack defect of bloom is optimized through the stable control of N content in low range under the precondition of high strength weathering steel with sufficient strength.


2014 ◽  
Vol 33 (1) ◽  
pp. 1-12 ◽  
Author(s):  
A. Raj ◽  
B. Goswami ◽  
A.K. Ray

AbstractThis is a study of microalloyed steels for power plants and reactors. Components operate at coal dust fire temperature or thermal states of reactors, prone to creep during its service. This is to assess remaining life after passage of valuable life by variation in microstructure, e.g. cavity formation. Precipitation at the sub-grain boundaries and grain interior has increased high temperature strength. Coarsening of these appears at the end of life. Variation of heat treatment like spheroidising in place of solutionizing has been responsive to deteriorate performance. Dislocation interplay with precipitate has been acceptable while interaction among dislocations to forest dislocation has been unacceptable. Dislocation assisted nucleation of precipitates of fine size has been found to strengthen steel by thermo-mechanical control process with in greater heating temperature and lower finish rolling temperature. High temperature performance of materials has been assessed by creep, accelerated creep, creep-fatigue and fatigue performances. Increasing temperature for increasing efficiency has correlated the phase transformation of steel. Fatigue performances have been included in creep properties of materials when intermittent shut down–shut up schedules are operated, e.g. peaking power plants.


Sign in / Sign up

Export Citation Format

Share Document