scholarly journals Flow hydraulic simulation through two sand traps, using Ansys fluent

2021 ◽  
Vol 2118 (1) ◽  
pp. 012002
Author(s):  
C D Rodríguez ◽  
J S De Plaza

Abstract Computational fluid dynamics is a tool that allows to simulate and observe the behavior of any fluid, based on a physical, hydraulic, and hydrodynamic analysis. This research analyses the behavior of the flow in a sand trap, which is a structure used to remove sand particles with a minimum size of 0.10 mm, prior to treatment in a drinking-water plant. The objective of this study is to determine the highest efficiency between two sand traps, one with a double smooth screen and the other with a double perforated screen (with diffusers), based on the simulation and analysis behavior of the flow inside each sand trap. The methodology used includes the traditional design of each unit based on Hazen’s model and Stokes viscosity law, to later carry out the numerical model simulation from Ansys Fluent (pre-processing, processing, and post-processing). The result shows that perforated double screen sand trap generates a removal efficiency of 78%, while the smooth double screen 28%. In addition, other four units of interleaved screens are proposed, in these cases efficiencies of up to 50% are observed and it is shown that it is necessary to implement at least two perforated screens (with diffusers) to guarantee an efficiency greater than 70%. Hydraulic simulation has a broad impact on infrastructure works and consulting.

2020 ◽  
Vol 29 (3) ◽  
pp. 275-288
Author(s):  
Elvis Žic ◽  
Patrik Banko ◽  
Luka Lešnik

As a very important element of most water supply systems, valves are exposed to the effects of strong hydrodynamic forces. When exposed to large physical quantities, the valve and piping can be damaged, which could endanger the performance of a water supply system. This is the main reason why it is necessary to foresee and determine the maximum values of velocity, pressure and other physical quantities that can occur in the system under certain conditions. Predicting extreme conditions allows us to correctly size the valve for the expected conditions to which the valve might be exposed, which is also the main objective of this paper. One of the methods for predicting and determining extreme values on a valve is to perform a simulation with computational fluid dynamics (CFD). This is exactly the method used in the preparation of this paper with the aim of gaining insight into the physical magnitudes for models of gate valves positioned inside a pipe under characteristic degrees of valve closure. The Ansys CFX 19.1 and Ansys Fluent 19.1 software was used to simulate the hydrodynamic analysis and obtain the required results. The hydrodynamic analysis was performed for four opening degrees of gate valve


The downstream scour of the control structure is a more common and very complex issue in river engineering. Flow structure in the vicinity of the control structure is entirely different from other parts of the river. Ansys Fluent Multiphase Eulerian model combined with hybrid Dense Discrete Phase Model (DDPM) provides much accurate and precise view of flow structure. This model provides a better understanding of flow structure, and it is associated scour development at upstream and downstream. Model simulation is performed on the trapezoidal weir and trapezoidal weir with sloping apron platforms to compare the flow structure, and it is associated scour. The erosion is computed by Mc Laury erosion model, and particle tracking is done using DDPM through a Lagrangian approach stimulate the movement of particles within the flow domain, velocity and other properties. This research focused on delivering much better anticipation about all flow features and sediment particle tracking captured in a closer manner. In this analysis with the trapezoidal weir, the velocity reached around 0.835 ms -1. However, as in the case of trapezoidal weir with sloping apron, the maximum velocity goes approximately 0.505 ms-1 which are nearly equal to inlet velocity. From the analysis, the sloping apron proves to be significant in protecting the downstream side of the control structure


Author(s):  
Adolfo Ruiz-Soto ◽  
Diana Barraza-Jiménez ◽  
Abel Hurtado-Macias ◽  
Sandra Iliana Torres-Herrera ◽  
Carlos Omar Ríos-Orozco ◽  
...  

Author(s):  
D.S. DeMiglio

Much progress has been made in recent years towards the development of closed-loop foundry sand reclamation systems. However, virtually all work to date has determined the effectiveness of these systems to remove surface clay and metal oxide scales by a qualitative inspection of a representative sampling of sand particles. In this investigation, particles from a series of foundry sands were sized and chemically classified by a Lemont image analysis system (which was interfaced with an SEM and an X-ray energy dispersive spectrometer) in order to statistically document the effectiveness of a reclamation system developed by The Pangborn Company - a subsidiary of SOHIO.The following samples were submitted: unreclaimed sand; calcined sand; calcined & mechanically scrubbed sand and unused sand. Prior to analysis, each sample was sprinkled onto a carbon mount and coated with an evaporated film of carbon. A backscattered electron photomicrograph of a field of scale-covered particles is shown in Figure 1. Due to a large atomic number difference between sand particles and the carbon mount, the backscattered electron signal was used for image analysis since it had a uniform contrast over the shape of each particle.


Author(s):  
J. V. Maskowitz ◽  
W. E. Rhoden ◽  
D. R. Kitchen ◽  
R. E. Omlor ◽  
P. F. Lloyd

The fabrication of the aluminum bridge test vehicle for use in the crystallographic studies of electromigration involves several photolithographic processes, some common, while others quite unique. It is most important to start with a clean wafer of known orientation. The wafers used are 7 mil thick boron doped silicon. The diameter of the wafer is 1.5 inches with a resistivity of 10-20 ohm-cm. The crystallographic orientation is (111).Initial attempts were made to both drill and laser holes in the silicon wafers then back fill with photoresist or mounting wax. A diamond tipped dentist burr was used to successfully drill holes in the wafer. This proved unacceptable in that the perimeter of the hole was cracked and chipped. Additionally, the minimum size hole realizable was > 300 μm. The drilled holes could not be arrayed on the wafer to any extent because the wafer would not stand up to the stress of multiple drilling.


2020 ◽  
Vol 92 (1) ◽  
pp. 10906
Author(s):  
Jeroen Schoenmaker ◽  
Pâmella Gonçalves Martins ◽  
Guilherme Corsi Miranda da Silva ◽  
Julio Carlos Teixeira

Organic Rankine Cycle (ORC) systems are increasingly gaining relevance in the renewable and sustainable energy scenario. Recently our research group published a manuscript identifying a new type of thermodynamic cycle entitled Buoyancy Organic Rankine Cycle (BORC) [J. Schoenmaker, J.F.Q. Rey, K.R. Pirota, Renew. Energy 36, 999 (2011)]. In this work we present two main contributions. First, we propose a refined thermodynamic model for BORC systems accounting for the specific heat of the working fluid. Considering the refined model, the efficiencies for Pentane and Dichloromethane at temperatures up to 100 °C were estimated to be 17.2%. Second, we show a proof of concept BORC system using a 3 m tall, 0.062 m diameter polycarbonate tube as a column-fluid reservoir. We used water as a column fluid. The thermal stability and uniformity throughout the tube has been carefully simulated and verified experimentally. After the thermal parameters of the water column have been fully characterized, we developed a test body to allow an adequate assessment of the BORC-system's efficiency. We obtained 0.84% efficiency for 43.8 °C working temperature. This corresponds to 35% of the Carnot efficiency calculated for the same temperature difference. Limitations of the model and the apparatus are put into perspective, pointing directions for further developments of BORC systems.


The paper describes the main trends in the development of BIM technologies in the field of restoration and reconstruction of historical and cultural heritage buildings. The practical part of the paper presents the experience in using information modeling technologies when restoring the building, where the VI Congress of the Chinese Communist Party in Moscow took place. The use of laser scanning technologies made it possible to reproduce with high accuracy in the information model the original appearance of the building using Autodesk RevitR software. It is shown, how the use of information modeling technologies affects the duration of restoration process, taking into account the calculation of the structural scheme and bearing structures of the building, ensuring the identity of the decoration and the effective organization of electromechanical installation. Operating in a single BIM information environment makes it possible to continuously obtain reliable information on the project, which provides more effective information interaction and communication of participants compared to using traditional design methods.


Author(s):  
M. A. Abd Halim ◽  
N. A. R. Nik Mohd ◽  
M. N. Mohd Nasir ◽  
M. N. Dahalan

Induction system or also known as the breathing system is a sub-component of the internal combustion system that supplies clean air for the combustion process. A good design of the induction system would be able to supply the air with adequate pressure, temperature and density for the combustion process to optimizing the engine performance. The induction system has an internal flow problem with a geometry that has rapid expansion or diverging and converging sections that may lead to sudden acceleration and deceleration of flow, flow separation and cause excessive turbulent fluctuation in the system. The aerodynamic performance of these induction systems influences the pressure drop effect and thus the engine performance. Therefore, in this work, the aerodynamics of motorcycle induction systems is to be investigated for a range of Cubic Feet per Minute (CFM). A three-dimensional simulation of the flow inside a generic 4-stroke motorcycle airbox were done using Reynolds-Averaged Navier Stokes (RANS) Computational Fluid Dynamics (CFD) solver in ANSYS Fluent version 11. The simulation results are validated by an experimental study performed using a flow bench. The study shows that the difference of the validation is 1.54% in average at the total pressure outlet. A potential improvement to the system have been observed and can be done to suit motorsports applications.


Sign in / Sign up

Export Citation Format

Share Document