Application of Multiple Diagnostic Plots to Identify End of Linear Flow in Unconventional Reservoirs

2021 ◽  
Author(s):  
Helmi Pratikno ◽  
W. John Lee ◽  
Cesario K. Torres

Abstract This paper presents a method to identify switch time from end of linear flow (telf) to transition or boundary-dominated flow (BDF) by utilizing multiple diagnostic plots including a Modified Fetkovich type curve (Eleiott et al. 2019). In this study, we analyzed publicly available production data to analyze transient linear flow behavior and boundary-dominated flow from multiple unconventional reservoirs. This method applies a log-log plot of rate versus time combined with a log-log plot of rate versus material balance time (MBT). In addition to log-log plots, a specialized plot of rate versus square root of time is used to confirm telf. A plot of MBT versus actual time, t, is provided to convert material balance time to actual time, and vice versa. The Modified Fetkovich type curve is used to estimate decline parameters and reservoir properties. Applications of this method using monthly production data from Bakken and Permian Shale areas are presented in this work. Utilizing public data, our comprehensive review of approximately 800 multi-staged fractured horizontal wells (MFHW) from North American unconventional reservoirs found many of them exhibiting linear flow production characteristics. To identify end of linear flow, a log-log plot of rate versus time alone is not sufficient, especially when a well is not operated in a consistent manner. This paper shows using additional diagnostic plots such as rate versus MBT and specialized plots can assist interpreters to better identify end of linear flow. With the end of linear flow determined for these wells, the interpreter can use the telf to forecast future production and estimate reservoir properties using the modified type curve. These diagnostic plots can be added to existing production analysis tools so that engineers can analyze changes in flow regimes in a timely manner, have better understanding of how to forecast their wells, and reduce the uncertainty in estimated ultimate recoveries related to decline parameters.

2007 ◽  
Vol 10 (03) ◽  
pp. 312-331 ◽  
Author(s):  
Christopher R. Clarkson ◽  
R. Marc Bustin ◽  
John P. Seidle

Summary Coalbed-methane (CBM) reservoirs commonly exhibit two-phase-flow (gas plus water) characteristics; however, commercial CBM production is possible from single-phase (gas) coal reservoirs, as demonstrated by the recent development of the Horseshoe Canyon coals of western Canada. Commercial single-phase CBM production also occurs in some areas of the low-productivity Fruitland Coal, south-southwest of the high-productivity Fruitland Coal Fairway in the San Juan basin, and in other CBM-producing basins of the continental United States. Production data of single-phase coal reservoirs may be analyzed with techniques commonly applied to conventional reservoirs. Complicating application, however, is the unique nature of CBM reservoirs; coal gas-storage and -transport mechanisms differ substantially from conventional reservoirs. Single-phase CBM reservoirs may also display complex reservoir behavior such as multilayer characteristics, dual-porosity effects, and permeability anisotropy. The current work illustrates how single-well production-data-analysis (PDA) techniques, such as type curve, flowing material balance (FMB), and pressure-transient (PT) analysis, may be altered to analyze single-phase CBM wells. Examples of how reservoir inputs to the PDA techniques and subsequent calculations are modified to account for CBM-reservoir behavior are given. This paper demonstrates, by simulated and field examples, that reasonable reservoir and stimulation estimates can be obtained from PDA of CBM reservoirs only if appropriate reservoir inputs (i.e., desorption compressibility, fracture porosity) are used in the analysis. As the field examples demonstrate, type-curve, FMB, and PT analysis methods for PDA are not used in isolation for reservoir-property estimation, but rather as a starting point for single-well and multiwell reservoir simulation, which is then used to history match and forecast CBM-well production (e.g., for reserves assignment). CBM reservoirs have the potential for permeability anisotropy because of their naturally fractured nature, which may complicate PDA. To study the effects of permeability anisotropy upon production, a 2D, single-phase, numerical CBM-reservoir simulator was constructed to simulate single-well production assuming various permeability-anisotropy ratios. Only large permeability ratios (>16:1) appear to have a significant effect upon single-well production characteristics. Multilayer reservoir characteristics may also be observed with CBM reservoirs because of vertical heterogeneity, or in cases where the coals are commingled with conventional (sandstone) reservoirs. In these cases, the type-curve, FMB, and PT analysis techniques are difficult to apply with confidence. Methods and tools for analyzing multilayer CBM (plus sand) reservoirs are presented. Using simulated and field examples, it is demonstrated that unique reservoir properties may be assigned to individual layers from commingled (multilayer) production in the simple two-layer case. Introduction Commercial single-phase (gas) CBM production has been demonstrated recently in the Horseshoe Canyon coals of western Canada (Bastian et al. 2005) and previously in various basins in the US; there is currently a need for advanced PDA techniques to assist with evaluation of these reservoirs. Over the past several decades, significant advances have been made in PDA of conventional oil and gas reservoirs [select references include Fetkovich (1980), Fetkovich et al. (1987), Carter (1985), Fraim and Wattenbarger (1987), Blasingame et al. (1989, 1991), Palacio and Blasingame (1993), Fetkovich et al. (1996), Agarwal et al. (1999), and Mattar and Anderson (2003)]. These modern methods have greatly enhanced the engineers' ability to obtain quantitative information about reservoir properties and stimulation/damage from data that are gathered routinely during the producing life of a well, such as production data and, in some instances, flowing pressure information. The information that may be obtained from detailed PDA includes oil or gas in place (GIP), permeability-thickness product (kh), and skin (s), and this can be used to supplement information obtained from other sources such as PT analysis, material balance, and reservoir simulation.


Author(s):  
P. Noverri

Delta Mahakam is a giant hydrocarbon block which is comprised two oil fields and five gas fields. The giant block has been considered mature after production for more than 40 years. More than 2,000 wells have been drilled to optimize hydrocarbon recovery. From those wells, a huge amount of production data is available and documented in a well-structured manner. Gaining insight from this data is highly beneficial to understand fields behavior and their characteristics. The fields production characterization is analyzed with Production Type-Curve method. In this case, type curves were generated from production data ratio such as CGR, WGR and GOR to field recovery factor. Type curve is considered as a simple approach to find patterns and capture a helicopter view from a huge volume of production data. Utilization of business intelligence enables efficient data gathering from different data sources, data preparation and data visualization through dashboards. Each dashboard provides a different perspective which consists of field view, zone view, sector view and POD view. Dashboards allow users to perform comprehensive analysis in describing production behavior. Production type-curve analysis through dashboards show that fields in the Mahakam Delta can be grouped based on their production behavior and effectively provide global field understanding Discovery of production key information from proposed methods can be used as reference for prospective and existing fields development in the Mahakam Delta. This paper demonstrates an example of production type-curve as a simple yet efficient method in characterizing field production behaviors which is realized by a Business Intelligent application


2021 ◽  
Author(s):  
Vil Syrtlanov ◽  
Yury Golovatskiy ◽  
Ivan Ishimov

Abstract In this paper the simplified way is proposed for predicting the dynamics of liquid production and estimating the parameters of the oil reservoir using diagnostic curves, which are a generalization of analytical approaches, partially compared with the results of calculations on 3D simulation models and with actual well production data.


2021 ◽  
pp. 1-23
Author(s):  
Daniel O'Reilly ◽  
Manouchehr Haghighi ◽  
Mohammad Sayyafzadeh ◽  
Matthew Flett

Summary An approach to the analysis of production data from waterflooded oil fields is proposed in this paper. The method builds on the established techniques of rate-transient analysis (RTA) and extends the analysis period to include the transient- and steady-state effects caused by a water-injection well. This includes the initial rate transient during primary production, the depletion period of boundary-dominated flow (BDF), a transient period after injection starts and diffuses across the reservoir, and the steady-state production that follows. RTA will be applied to immiscible displacement using a graph that can be used to ascertain reservoir properties and evaluate performance aspects of the waterflood. The developed solutions can also be used for accurate and rapid forecasting of all production transience and boundary-dominated behavior at all stages of field life. Rigorous solutions are derived for the transient unit mobility displacement of a reservoir fluid, and for both constant-rate-injection and constant-pressure-injection after a period of reservoir depletion. A simple treatment of two-phase flow is given to extend this to the water/oil-displacement problem. The solutions are analytical and are validated using reservoir simulation and applied to field cases. Individual wells or total fields can be studied with this technique; several examples of both will be given. Practical cases are given for use of the new theory. The equations can be applied to production-data interpretation, production forecasting, injection-water allocation, and for the diagnosis of waterflood-performanceproblems. Correction Note: The y-axis of Fig. 8d was corrected to "Dimensionless Decline Rate Integral, qDdi". No other content was changed.


Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Shijun Huang ◽  
Jiaojiao Zhang ◽  
Sidong Fang ◽  
Xifeng Wang

In shale gas reservoirs, the production data analysis method is widely used to invert reservoir and fracture parameter, and productivity prediction. Compared with numerical models and semianalytical models, which have high computational cost, the analytical model is mostly used in the production data analysis method to characterize the complex fracture network formed after fracturing. However, most of the current calculation models ignore the uneven support of fractures, and most of them use a single supported fracture model to describe the flow characteristics, which magnifies the role of supported fracture to a certain extent. Therefore, in this study, firstly, the fractures are divided into supported fractures and unsupported fractures. According to the near-well supported fractures and far-well unsupported fractures, the SRV zone is divided into outer SRV and inner SRV. The four areas are characterized by different seepage models, and the analytical solutions of the models are obtained by Laplace transform and inverse transform. Secondly, the material balance pseudotime is introduced to process the production data under the conditions of variable production and variable pressure. The double logarithmic curves of normalized production rate, rate integration, the derivative of the integration, and material balance pseudotime are established, and the parameters are interpreted by fitting the theoretical curve to the measured data. Then, the accuracy of the method is verified by comparison the parameter interpretation results with well test results, and the influence of parameters such as the half-length and permeability of supported and unsupported fractures on gas production is analyzed. Finally, the proposed method is applied to four field cases in southwest China. This paper mainly establishes an analytical method for parameter interpretation after hydraulic fracturing based on the production data analysis method considering the uneven support of fractures, which is of great significance for understanding the mechanism of fracturing stimulation, optimization of fracturing parameters, and gas production forecast.


2015 ◽  
Author(s):  
Basel Alotaibi ◽  
David Schechter ◽  
Robert A. Wattenbarger

Abstract In previous works and published literature, production forecast and production decline of unconventional reservoirs were done on a single-well basis. The main objective of previous works was to estimate the ultimate recovery of wells or to forecast the decline of wells in order to estimate how many years a well could produce and what the abandonment rate was. Other studies targeted production data analysis to evaluate the completion (hydraulic fracturing) of shale wells. The purpose of this work is to generate field-wide production forecast of the Eagle Ford Shale (EFS). In this paper, we considered oil production of the EFS only. More than 6 thousand oil wells were put online in the EFS basin between 2008 and December 2013. The method started by generating type curves of producing wells to understand their performance. Based on the type curves, a program was prepared to forecast the oil production of EFS based on different drilling schedules; moreover drilling requirements can be calculated based on the desired production rate. In addition, analysis of daily production data from the basin was performed. Moreover, single-well simulations were done to compare results with the analyzed data. Findings of this study depended on the proposed drilling and developing scenario of EFS. The field showed potential of producing high oil production rate for a long period of time. The presented forecasted case gave and indications of the expected field-wide rate that can be witnessed in the near future in EFS. The method generated by this study is useful for predicting the performance of various unconventional reservoirs for both oil and gas. It can be used as a quick-look tool that can help if numerical reservoir simulations of the whole basin are not yet prepared. In conclusion, this tool can be used to prepare an optimized drilling schedule to reach the required rate of the whole basin.


1994 ◽  
Author(s):  
S. L. West ◽  
P. J. R. Cochrane

Tight shallow gas reservoirs in the Western Canada Basin present a number of unique challenges in accurately determining reserves. Traditional methods such as decline analysis and material balance are inaccurate due to the formations' low permeabilities and poor pressure data. The low permeabilities cause long transient periods not easily separable from production decline using conventional decline analysis. The result is lower confidence in selecting the appropriate decline characteristics (exponential or harmonic) which significantly impacts recovery factors and remaining reserves. Limited, poor quality pressure data and commingled production from the three producing zones results in non representative pressure data and hence inaccurate material balance analysis. This paper presents the merit of two new methods of reserve evaluation which address the problems described above for tight shallow gas in the Medicine Hat field. The first method applies type curve matching which combines the analytical pressure solutions of the diffusivity equation (transient) with the empirical decline equation. The second method is an extended material balance which incorporates the gas deliverability theory to allow the selection of appropriate p/z derivatives without relying on pressure data. Excellent results were obtained by applying these two methodologies to ten properties which gather gas from 2300 wells. The two independent techniques resulted in similar production forecasts and reserves, confirming their validity. They proved to be valuable, practical tools in overcoming the various challenges of tight shallow gas and in improving the accuracy in gas reserves determination in the Medicine Hat field.


SPE Journal ◽  
2020 ◽  
Vol 25 (06) ◽  
pp. 3280-3299
Author(s):  
Hongyang Chu ◽  
Xinwei Liao ◽  
Zhiming Chen ◽  
W. John John Lee

Summary Because of readily available production data, rate-transient analysis (RTA) is an important method to predict productivity and reserves, and for reservoir and completion characterization in unconventional reservoirs. In addition, multihorizontal well pads are a common development method for unconventional reservoirs. Close well spacing between multifractured horizontal wells (MFHWs) in the multiwell pads makes interference from adjacent MFHWs especially significant. For RTA of production data from multihorizontal well pads, the influence of adjacent MFHWs cannot be ignored. In this work, we propose a semianalytic RTA model for the multihorizontal well pad with arbitrary multiple MFHW properties and starting-production times. Combining Laplace transformation and finite-difference analysis, we obtained a general solution of a multiwell mathematical model to use in RTA. Our model is applicable to cases of multiple MFHWs with different bottomhole pressures (BHPs), varying hydraulic-fracture properties, and different starting-production times. In the solutions, we observe bilinear flow, linear flow, transition flow, and multi-MFHW flow. Rate-normalized pressure (RNP) and its derivative are also affected by multi-MFHW flow. Two case studies revealed that the negative effect of interwell interference on the parent-well productivity is closely related to the pressure distribution caused by the production of child wells.


Sign in / Sign up

Export Citation Format

Share Document