scholarly journals Complex Temperature and Concentration Dependent Self-Assembly of Poly(2-oxazoline) Block Copolymers

Polymers ◽  
2020 ◽  
Vol 12 (7) ◽  
pp. 1495 ◽  
Author(s):  
Loan Trinh Che ◽  
Marianne Hiorth ◽  
Richard Hoogenboom ◽  
Anna-Lena Kjøniksen

The effect of polymer concentration on the temperature-induced self-association of a block copolymer comprising a poly(2-ethyl-2-oxazoline) block and a random copolymer block consisting of 2-ethyl-2-oxazoline and 2-n-propyl-2-oxazoline (PEtO80-block-P(EtOxx-stat-PropO40-x) with x = 0, 4, or 8 were investigated by dynamic light scattering (DLS) and transmittance measurements (turbidimetry). The polymers reveal a complex aggregation behavior with up to three relaxation modes in the DLS data and with a transmittance that first goes through a minimum before it declines at high temperatures. At low temperatures, unassociated polymer chains were found to co-exist with larger aggregates. As the temperature is increased, enhanced association and contraction of the aggregates results in a drop of the transmittance values. The aggregates fragment into smaller micellar-like clusters when the temperature is raised further, causing the samples to become optically clear again. At high temperatures, the polymers aggregate into large compact clusters, and the samples become turbid. Interestingly, very large aggregates were observed at low temperatures when the polymer concentrations were low. The formation of these aggregates was also promoted by a more hydrophilic copolymer structure. The formation of large aggregates with an open structure at conditions where the solvent conditions are improved is probably caused by depletion flocculation of the smaller aggregates.

Spurious kinks in estimated palaeogeotherms may result from small errors in the calibration of the geothermometers and geobarometers. New data indicate that the equilibrium solubility of alumina in enstatite is even less than shown by recent studies, and that the slopes (d T /d P ) of the isopleths of equal alumina content are steeper than hitherto believed. Consequently, pressures of equilibration estimated from current formulations of the orthopyroxene-garnet geobarometer will be too high at high temperatures (> 1200 °C) and too low at low temperatures.


2021 ◽  
Author(s):  
Haifeng Li ◽  
Xinyu ZHang ◽  
Yi Wu ◽  
Feng ZHang ◽  
CHunlin Li

Abstract Personality has been observed in a variety of animal taxa with important implications in ecology and evolution. Exploring the influence of environmental temperature during early life on personality could help to understand the ontogeny of this phenotypic trait in animals. In this study, we reared newborn mosquitofish Gambusia affinis at high (30°C) and low (25°C) water temperatures and measured their shyness and exploration upon sexual maturity. We tested the repeatability of each behavioral trait; the correlation between them; and the effects of rearing temperature, sex, and body length on the behaviors. When growing up at low temperatures, female fish exhibited repeatability in shyness and exploration, and males exhibited marginal repeatability in shyness. However, neither of the 2 behaviors were repeatable when the fish were reared at high temperatures. There was a negative correlation between shyness and exploration, indicating that the 2 behaviors comprise a behavioral syndrome in this species. Mosquitofish reared at high temperatures were more explorative than those reared at low temperatures, while there was no difference in shyness between the 2 treatments. Body length and sex had no significant effects on the average values of the 2 behaviors. The results indicate that environmental temperature during early life could shape the personality of mosquitofish and modify the average of the behavioral traits. These findings might provide insights to understand the ontogeny of animal personality and how changes in environmental temperature influence animal dispersal by shaping their personality.


Molecules ◽  
2021 ◽  
Vol 26 (15) ◽  
pp. 4705
Author(s):  
Boer Liu ◽  
Xi Chen ◽  
Glenn A. Spiering ◽  
Robert B. Moore ◽  
Timothy E. Long

This work reveals the influence of pendant hydrogen bonding strength and distribution on self-assembly and the resulting thermomechanical properties of A-AB-A triblock copolymers. Reversible addition-fragmentation chain transfer polymerization afforded a library of A-AB-A acrylic triblock copolymers, wherein the A unit contained cytosine acrylate (CyA) or post-functionalized ureido cytosine acrylate (UCyA) and the B unit consisted of n-butyl acrylate (nBA). Differential scanning calorimetry revealed two glass transition temperatures, suggesting microphase-separation in the A-AB-A triblock copolymers. Thermomechanical and morphological analysis revealed the effects of hydrogen bonding distribution and strength on the self-assembly and microphase-separated morphology. Dynamic mechanical analysis showed multiple tan delta (δ) transitions that correlated to chain relaxation and hydrogen bonding dissociation, further confirming the microphase-separated structure. In addition, UCyA triblock copolymers possessed an extended modulus plateau versus temperature compared to the CyA analogs due to the stronger association of quadruple hydrogen bonding. CyA triblock copolymers exhibited a cylindrical microphase-separated morphology according to small-angle X-ray scattering. In contrast, UCyA triblock copolymers lacked long-range ordering due to hydrogen bonding induced phase mixing. The incorporation of UCyA into the soft central block resulted in improved tensile strength, extensibility, and toughness compared to the AB random copolymer and A-B-A triblock copolymer comparisons. This study provides insight into the structure-property relationships of A-AB-A supramolecular triblock copolymers that result from tunable association strengths.


Soft Matter ◽  
2021 ◽  
Author(s):  
Alexander Kantardjiev

We carried out a series of coarse-grained molecular dynamics liposome-copolymer simulations with varying extent of copolymer concentration in an attempt to understand the effect of copolymer structure and concentration on vesicle self-assembly and stability.


2010 ◽  
Vol 74 ◽  
pp. 38-47
Author(s):  
Clay Mortensen ◽  
Paul Zschack ◽  
David C. Johnson

The evolution of designed [(Ti-Te)]x[(Sb-Te)]y, [(Bi-Te)]x[(Sb-Te)]y, [(Ti-Te)]w[(Bi-Te)]x[(Sb-Te)]y and [(Ti-Te)]w[(Bi-Te)]x[(Ti-Te)]y[(Sb-Te)]z precursors were followed as a function of annealing temperature and time using both low and high angle x-ray diffraction techniques to probe the self assembly into nanolaminate materials. The [(Bi-Te)]x[(Sb-Te)]y precursors were found to interdiffuse at low temperatures to form a (BixSb1-x)2Te3 alloy. The [(Ti-Te)]x[(Bi-Te)]y and [(Ti-Te)]x[(Sb-Te)]y precursors formed ordered nanolaminates [{(TiTe2)}1.35]x[Bi2Te3]y and [{(TiTe2)}1.35]x[Sb2Te3]y respectively. The [(Ti-Te)]w[(Bi-Te)]x[(Sb-Te)]x precursors formed [{(TiTe2)}1.35]w[(Bi0.5Sb0.5)2Te3]2x nanolaminates on annealing, as the bismuth and antimony layers interdiffused. Over the range of TiTe2 thicknesses used in [(Ti-Te)]w[(Bi-Te)]x[(Ti-Te)]y[(Sb-Te)]z precursors, Bi and Sb were found to interdiffuse through the 2-4 nm thick Ti-Te layers, resulting in the formation of (BixSb1-x)2Te3 alloy layers as part of the final nanolaminated products. When the Bi-Te and Sb-Te thicknesses were equal in the amorphous precursors, symmetric [{(TiTe2)}1.35]m[(Bi0.5Sb0.5)2Te3]n nanolamiantes were formed. When the thicknesses of Bi-Te and Sb-Te layers were not equal in the amorphous precursor, asymmetric [(TiTe2)1.35]m[(BixSb1-x)2Te3]n[(TiTe2)1.35]m[(BixSb1-x)2Te3]p nanolaminates were formed. These results imply that to form (A)w(B)x(C)y nanolaminates using designed layered precursors all three components must be immiscible. To form (A)x(B)y(A)x(C)z nanolaminates, the components must be immiscible or the precursor to the A component and the A component itself must be an effective interdiffusion barrier preventing B and C from mixing.


2004 ◽  
Vol 811 ◽  
Author(s):  
Nobuhiro Kin ◽  
Koichiro Honda

ABSTRACTTo develop higher density FRAM requires reducing cell size. Therefore, the size effects resulting from device processing and the material's physical properties must be measured. Therefore, analyzing the electric characteristics of a single bit cell capacitor has become important. Two known characteristics of ferroelectric material are that the Vc increases at low temperatures, and the Pr falls at high temperatures. To further evaluate the impact of temperature on ferroelectrics, we constructed a new evaluation system based on a scanning probe microscope, that can measure the electric characteristics of a single bit cell capacitor. This system can be used in the temperature range from −120 degrees to 300 degrees C. We accomplished this by circulating liquid nitrogen around a SPM stage and by using an electrical heater. We measured the electrical properties of ferroelectric microcapacitors by using a sample with IrOx/PZT/Pt structure. Our measurements revealed that 2Pr really increases at low temperatures, and Pr decreases at high temperatures. That is, we have shown that Vc increases 30% at low temperatures and Pr decreases 10% also in an actual FRAM single bit cell capacitor.


2016 ◽  
Vol 52 (10) ◽  
pp. 2133-2136 ◽  
Author(s):  
Krunoslav Užarević ◽  
Timothy C. Wang ◽  
Su-Young Moon ◽  
Athena M. Fidelli ◽  
Joseph T. Hupp ◽  
...  

Mechanochemistry and accelerated aging are new routes to zirconium metal–organic frameworks, yielding UiO-66 and catalytically active UiO-66-NH2 accessible on the gram scale through mild solid-state self-assembly, without strong acids, high temperatures or excess reactants.


2000 ◽  
Vol 646 ◽  
Author(s):  
Haruyuki Inui ◽  
Koji Ishikawa ◽  
Masaharu Yamaguchi

ABSTRACTEffects of ternary additions on the deformation behavior of single crystals of MoSi2 with the hard [001] and soft [0 15 1] orientations have been investigated in compression and compression creep. The alloying elements studied include V, Cr, Nb and Al that form a C40 disilicide with Si and W and Re that form a C11b disilicide with Si. The addition of Al is found to decrease the yield strength of MoSi2 at all temperatures while the additions of V, Cr and Nb are found to decrease the yield strength at low temperatures and to increase the yield strength at high temperatures. In contrast, the additions of W and Re are found to increase the yield strength at all temperatures. The creep strain rate for the [001] orientation is significantly lower than that for the [0 15 1] orientation. The creep strain rate for both orientations is significantly improved by alloying with ternary elements such as Re and Nb.


2021 ◽  
Vol 13 (1) ◽  
pp. 140-151
Author(s):  
Minrui Guo ◽  
Xinglin Zhou

The effects of the cross-anisotropy of different materials of the asphalt surface layer and the depth-temperature relationship on pavement responses and damage are investigated. A three-dimensional Finite-Element Model (FEM) of the pavement, which considers the depth-temperature relationship of the surface layer under moving tire load, is developed. Pavement damage models are established to evaluate the damage ratio for primary rutting and fatigue cracking. The results show that the compressive strain at the bottom of the surface layer increases as the temperature increases, and the cross-anisotropy (n-value) decreases, indicating that a decrease in the horizontal modulus of different materials of the surface layer increases the damage ratio for primary rutting at high temperatures. The tensile strain at the bottom of the surface layer declines as the n-value increases to 1. For the same change in the n-value, the rate of change of the damage ratio for fatigue cracking is greater at low temperatures than at high temperatures, demonstrating that the number of allowable load repetitions is more sensitive at low temperatures. In addition, the effect of cross-anisotropy and temperature on the vertical stress are larger on the top of the base than in the subbase and subgrade.


Sign in / Sign up

Export Citation Format

Share Document