scholarly journals Metagenomic Analysis for Evaluating Change in Bacterial Diversity in TPH-Contaminated Soil after Soil Remediation

Toxics ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 319
Author(s):  
Jin-Wook Kim ◽  
Young-Kyu Hong ◽  
Hyuck-Soo Kim ◽  
Eun-Ji Oh ◽  
Yong-Ha Park ◽  
...  

Soil washing and landfarming processes are widely used to remediate total petroleum hydrocarbon (TPH)-contaminated soil, but the impact of these processes on soil bacteria is not well understood. Four different states of soil (uncontaminated soil (control), TPH-contaminated soil (CS), after soil washing (SW), and landfarming (LF)) were collected from a soil remediation facility to investigate the impact of TPH and soil remediation processes on soil bacterial populations by metagenomic analysis. Results showed that TPH contamination reduced the operational taxonomic unit (OTU) number and alpha diversity of soil bacteria. Compared to SW and LF remediation techniques, LF increased more bacterial richness and diversity than SW, indicating that LF is a more effective technique for TPH remediation in terms of microbial recovery. Among different bacterial species, Proteobacteria were the most abundant in all soil groups followed by Actinobacteria, Acidobacteria, and Firmicutes. For each soil group, the distribution pattern of the Proteobacteria class was different. The most abundant classed were Alphaproteobacteria (16.56%) in uncontaminated soils, Deltaproteobacteria (34%) in TPH-contaminated soils, Betaproteobacteria (24%) in soil washing, and Gammaproteobacteria (24%) in landfarming, respectively. TPH-degrading bacteria were detected from soil washing (23%) and TPH-contaminated soils (21%) and decreased to 12% in landfarming soil. These results suggest that soil pollution can change the diversity of microbial groups and different remediation techniques have varied effective ranges for recovering bacterial communities and diversity. In conclusion, the landfarming process of TPH remediation is more advantageous than soil washing from the perspective of bacterial ecology.

2021 ◽  
Vol 9 (5) ◽  
pp. 1037
Author(s):  
Craig Resch ◽  
Mihir Parikh ◽  
J. Alejandro Austria ◽  
Spencer D. Proctor ◽  
Thomas Netticadan ◽  
...  

There is an increased interest in the gut microbiota as it relates to health and obesity. The impact of diet and sex on the gut microbiota in conjunction with obesity also demands extensive systemic investigation. Thus, the influence of sex, diet, and flaxseed supplementation on the gut microbiota was examined in the JCR:LA-cp rat model of genetic obesity. Male and female obese rats were randomized into four groups (n = 8) to receive, for 12 weeks, either (a) control diet (Con), (b) control diet supplemented with 10% ground flaxseed (CFlax), (c) a high-fat, high sucrose (HFHS) diet, or (d) HFHS supplemented with 10% ground flaxseed (HFlax). Male and female JCR:LA-cp lean rats served as genetic controls and received similar dietary interventions. Illumine MiSeq sequencing revealed a richer microbiota in rats fed control diets rather than HFHS diets. Obese female rats had lower alpha-diversity than lean female; however, both sexes of obese and lean JCR rats differed significantly in β-diversity, as their gut microbiota was composed of different abundances of bacterial types. The feeding of an HFHS diet affected the diversity by increasing the phylum Bacteroidetes and reducing bacterial species from phylum Firmicutes. Fecal short-chain fatty acids such as acetate, propionate, and butyrate-producing bacterial species were correspondingly impacted by the HFHS diet. Flax supplementation improved the gut microbiota by decreasing the abundance of Blautia and Eubacterium dolichum. Collectively, our data show that an HFHS diet results in gut microbiota dysbiosis in a sex-dependent manner. Flaxseed supplementation to the diet had a significant impact on gut microbiota diversity under both flax control and HFHS dietary conditions.


2001 ◽  
Vol 43 (2) ◽  
pp. 291-295 ◽  
Author(s):  
J. Vouillamoz ◽  
M. W. Milke

The effect of compost on phytoremediation of diesel-contaminated soils was investigated using 130 small (200 g) containers in two screening tests. The experiments were conducted in a controlled environment using ryegrass from seed. Containers were destructively sampled at various times and analyzed for plant mass and total petroleum hydrocarbons. The results indicate that the presence of diesel reduces grass growth, and that compost helps reduced the impact of diesel on grass growth. The addition of compost helps increase diesel loss from the soils both with and without grass, though the addition of grass leads to lower diesel levels compared with controls. A second set of experiments indicates that the compost helps in phytoremediation of diesel-contaminated soil independent of the dilution effect that compost addition has. The results indicate that the compost addition allowed diesel loss down to 200 mg TPH/kg even though the compost would be expected to hold the diesel more tightly in the soil/compost mixture. The simplicity of the screening tests led to difficulties in controlling moisture content and germination rates. The conclusion of the research is that the tilling of compost into soils combined with grass seeding appears to be a valuable option for treating petroleum-contaminated soils.


Author(s):  
Kanghee Cho ◽  
Eunji Myung ◽  
Hyunsoo Kim ◽  
Cheonyoung Park ◽  
Nagchoul Choi ◽  
...  

In this study, we investigated the feasibility of using a solution of sulfuric acid and phosphoric acid as an extraction method for soil-washing to remove Cu, Pb, Zn, and As from contaminated soil. We treated various soil particles, including seven fraction sizes, using sulfuric acid. In addition, to improve Cu, Pb, Zn, and As removal efficiencies, washing agents were compared through batch experiments. The results showed that each agent behaved differently when reacting with heavy metals (Cu, Pb, and Zn) and As. Sulfuric acid was more effective in extracting heavy metals than in extracting As. However, phosphoric acid was not effective in extracting heavy metals. Compared with each inorganic acid, As removal from soil by washing agents increased in the order of sulfuric acid (35.81%) < phosphoric acid (62.96%). Therefore, an enhanced mixture solution using sulfuric acid and phosphoric acid to simultaneously remove heavy metals and As from contaminated soils was investigated. Sulfuric acid at 0.6 M was adopted to combine with 0.6 M phosphoric acid to obtain the mixture solution (1:1) that was used to determine the effect for the simultaneous removal of both heavy metals and As from the contaminated soil. The removal efficiencies of As, Cu, Pb, and Zn were 70.5%, 79.6%, 80.1%, and 71.2%, respectively. The combination of sulfuric acid with phosphoric acid increased the overall As and heavy metal extraction efficiencies from the contaminated soil samples. With the combined effect of dissolving oxides and ion exchange under combined washings, the removal efficiencies of heavy metals and As were higher than those of single washings.


Materials ◽  
2020 ◽  
Vol 13 (19) ◽  
pp. 4309 ◽  
Author(s):  
Maiara Barbosa Ferreira ◽  
Aline Maria Sales Solano ◽  
Elisama Vieira dos Santos ◽  
Carlos A. Martínez-Huitle ◽  
Soliu O. Ganiyu

In recent years, due to industrial modernization and agricultural mechanization, several environmental consequences have been observed, which make sustainable development difficult. Soil, as an important component of ecosystem and a key resource for the survival of human and animals, has been under constant contamination from different human activities. Contaminated soils and sites require remediation not only because of the hazardous threat it possess to the environment but also due to the shortage of fresh land for both agriculture and urbanization. Combined or coupled remediation technologies are one of the efficient processes for the treatment of contaminated soils. In these technologies, two or more soil remediation techniques are applied simultaneously or sequentially, in which one technique complements the other, making the treatment very efficient. Coupling anodic oxidation (AO) and soil remediation for the treatment of soil contaminated with organics has been studied via two configurations: (i) soil remediation, ex situ AO, where AO is used as a post-treatment stage for the treatment of effluents from soil remediation process and (ii) soil remediation, in situ AO, where both processes are applied simultaneously. The former is the most widely investigated configuration of the combined processes, while the latter is less common due to the greater diffusion dependency of AO as an electrode process. In this review, the concept of soil washing (SW)/soil flushing (SF) and electrokinetic as soil remediation techniques are briefly explained followed by a discussion of different configurations of combined AO and soil remediation.


Author(s):  
Mike Pearl

Abstract Laboratory and pilot scale tests have been carried out to assess the potential application of soil washing to the treatment of radioactively contaminated soil, rubble and rocks from its sites. With radioactively contaminated soils it was difficult to clean to a free release level (&lt;0.4 Bq/g), although it was possible to clean to a risk based target, or to a waste categorised as Very Low Radioactive Material. With radioactively contaminated rubble and rocks, wet scrubbing in a tumbling mill was very effective at removing surface contamination so that the products could be disposed as free release material or Very Low Radioactive Material.


Author(s):  
Xiaoyu Qi ◽  
Xiaoming Xu ◽  
Chuanqing Zhong ◽  
Tianyi Jiang ◽  
Wei Wei ◽  
...  

Soil contaminated with Cd and Pb has caused sharp decrease of cultivatable soil and has been attracting increasing attention. Biosurfactants are efficient in solving the problem. However, little information is available about the influence of sophorolipids (SLs) on the remediation of Cd- or Pb-contaminated soil. The sophorolipids produced by Starmerella bombicola CGMCC 1576 were used to study the effects of Cd and Pb removal in batch soil washing from artificially contaminated soil. The removal efficiency of crude total SLs was better than both distilled water and synthetic surfactants. Furthermore, 83.6% of Cd and 44.8% of Pb were removed by 8% crude acidic SLs. Acidic SLs with high water solubility were more effective than lactonic SLs in enhancing remediation of heavy metal-contaminated soils. The complexation of Cd with the free carboxyl group of the acidic SLs was observed by Fourier-transform infrared spectroscopy study, and this complexation was effective in heavy metal removal from the soil. The fermentation broth of S. bombicola, without further preparation, removed 95% of Cd and 52% of Pb. These results suggested that SLs produced by S. bombicola could function as potential bioremediation agents for heavy metal-contaminated soil.


2019 ◽  
Vol 28 ◽  
pp. 33-41 ◽  
Author(s):  
OA Oyewole ◽  
SS Leh Togi Zobeashia ◽  
OE Oladoja ◽  
IO Musa ◽  
IT Terhemba

This study is aimed at isolating bacterial species that inhabit diesel contaminated soil and also screened these isolates for the ability to be used for remediating diesel contaminated environment using their potential to degrade diesel as carbon and energy source. Top soil sample was collected from an ancient diesel-powered generator house in Minna, Nigeria, in a sterilized plastic container while diesel oil was obtained from local petrol bunk. Four bacterial isolates were isolated from the diesel contaminated soil sample and were screened for their ability to degrade diesel using mineral salt medium (MSM). The isolates with highest biodegradation potential were identified as Bacillus subtilis and Bacillus cereus. The optimum pH (5, 6, 7 and 8) and hydrocarbon concentration (1%, 2%, 5% and 10%) of the isolate was determined by spectrophotometry and the result revealed that the optimum pH for biodegradation of diesel by Bacillus subtilis and Bacillus cereus, was 7 (1.170) and 8 (1.745) respectively while the optimum hydrocarbon concentration degradation for both isolates was 5% (2.22) and 1% (2.37) respectively. The results of this study showed that these isolates were able to degrade diesel and can be useful for large scale bioremediation of diesel contaminated soils. J. bio-sci. 28: 33-41, 2020


2019 ◽  
Vol 232 ◽  
pp. 895-901 ◽  
Author(s):  
Quan Zou ◽  
Honglin Xiang ◽  
Jianguo Jiang ◽  
Dean Li ◽  
Aikelaimu Aihemaiti ◽  
...  

2021 ◽  
Vol 13 (2) ◽  
pp. 452
Author(s):  
Junfang Sun ◽  
Angran Tian ◽  
Zheyuan Feng ◽  
Yu Zhang ◽  
Feiyang Jiang ◽  
...  

Carbon emission is one of the main causes of global climate change, thus it is necessary to choose a low-carbon method in the contaminated soil remediation. This paper studies the adsorption ability of ZVI on Pb(II) contaminated soils under different working conditions. The removal efficiency of Pb(II) was 98% because of the suitable ZVI dosage, log reaction time and low initial solution concentration. The whole balancing process was much fast according to the pseudo-second-order kinetic and Freundlich isothermal model. Moreover, sequential extraction procedure (SEP) showed Pb(II) was transformed from Fe/Mn oxides-bound form to residual form in Pb(II) contaminated soils. From scanning electron microscopy (SEM), Brunauer-Emmett-Teller method (BET) and X-ray diffraction (XRD) results, it was confirmed that zero-valent iron (ZVI) stabilizes Pb(II) pollutants mostly through the combination of chemical adsorption and physical adsorption. The economic and carbon emission assessments were used to compare the cost and carbon emissions of different methods. The results show that ZVI adsorption has excellent economic benefits and low carbon emission.


2021 ◽  
Vol 13 (22) ◽  
pp. 12523
Author(s):  
Sang-Hwan Lee ◽  
Soon-Oh Kim ◽  
Sang-Woo Lee ◽  
Min-Suk Kim ◽  
Hyun Park

Global governance of soil resources as well as revitalizations and remediation of degraded areas seem to be necessary actions for sustainable development. A great deal of effort has gone into developing remediation technologies to remove or reduce the impact of these contaminants in the environment. However, contaminated soil remediations in stringent conditions deteriorate soil properties and functions and create the need for efficient soil revitalization measures. Soil washing (SW) and thermal desorption (TD) are commonly used to remediate contaminated soil and can significantly reduce the contaminant, sometimes to safe levels where reuse can be considered; however, the effects of treatment on soil quality must be understood in order to support redevelopment after remediation. In this review, we discussed the effects of SW and TD on soil properties, including subsequent soil quality and health. Furthermore, the importance of these techniques for remediation and reclamation strategies was discussed. Some restoration strategies were also proposed for the recovery of soil quality. In addition, remediated and revitalized soil can be reused for various purposes, which can be accepted as an implementation of sustainable remediation. This review concludes with an outlook of future research efforts that will further shift SW and TD toward sustainable remediation.


Sign in / Sign up

Export Citation Format

Share Document