rheological character
Recently Published Documents


TOTAL DOCUMENTS

11
(FIVE YEARS 2)

H-INDEX

3
(FIVE YEARS 0)

2021 ◽  
Vol 9 ◽  
Author(s):  
Zhaoxia Liu ◽  
Qiang Wang ◽  
Ming Gao ◽  
Wenli Luo ◽  
Hongyan Cai

In this paper, a composite sample (VES and SiO2 nanoparticle) was used to overcome the deficiencies of polymer. The rheological character of the VES/nanoparticles hybrid and flow behavior in porous media were examined. It was found that SiO2 nanoparticles exhibited viscosifying action and improved the oil tolerance. In addition, the VES solution without nanoparticles showed a lower capacity to recover oil, which might be attributed to the fact that wormlike micelles would be destroyed in crude oil. On the contrary, an enhanced oil recovery of 9.68% was achieved in the composited experiment for the VES sample with nanoparticles which is relatively stable with oil.


Geology ◽  
2020 ◽  
Author(s):  
Jaco H. Baas ◽  
Jim Best ◽  
Jeff Peakall

Sediment gravity flows demonstrate a wide range of rheological behaviors, and past work has shown how transformations between flow types generate spatiotemporal changes in the resultant sedimentary successions. We used the geometrical characteristics of a single climbing ripple to demonstrate how such flows can transform from a turbulent to a quasi-laminar plug flow, with the transitional clay flow sequence being manifested by abnormally large heterolithic sand-clay current ripples with small backflow ripples, and then abundant clay deposition associated with smaller ripples. Analysis of ripple size, angle of climb, grain size, internal erosional surfaces, and soft-sediment deformation suggests that transformation in the rheological character of the sediment gravity flow was rapid, occurring over a period of tens of minutes, and thus probably over a spatial scale of hundreds of meters to several kilometers. Our study indicates how the character of flow transformation can be elucidated from the details of a small-scale sedimentary structure.


2015 ◽  
Vol 60 (2) ◽  
pp. 697-704 ◽  
Author(s):  
P. Migas

Abstract It is known that the dynamic viscosity coefficient of slag – with an increased titanium compounds content in the reducing conditions of the blast furnace - may rapidly change. The products of the reduction reaction, precipitation and separation of titanium compounds are responsible for the thickening effect of the slag and the problems of permeability of blast furnace, causing anomalies in the dipping zone. The presence of solid components (particles) in the melts determines the rheological character of the entire system. Identifying the rheological character of semi-solid slag systems provides opportunities for the development of mathematical modeling of liquid phase flows in a dripping zone of the blast furnace, allowing e.g to indentify the unstable parts of a metallurgical aggregate. Author have performed study of synthetic aluminosilicates slag concentration of TiO2 in the range up to 30%, systems were doped solids TiN also, it was made in order to assess the impact of the type forming areas/units of the SRO nature on the rheological identification mentioned systems. The high-temp rheometric measurements were performed at temperatures in the range between 1310-1490°C. The obtained results made it possible to carry out the rheological characteristics of analyzed liquid and semi-solid slag systems.


2014 ◽  
Vol 611-612 ◽  
pp. 1645-1656
Author(s):  
Piotr Migas ◽  
Marta Korolczuk-Hejnak

800x600 The applying of burden materials containing titanium compounds in the blast furnace process and the processes of forming titanium carbides and nitrides has a directly impact on the physical and chemical properties of slag and pig iron. Thereby affecting the course of the process, its efficiency and economy. It is known that the dynamic viscosity coefficient of slag – with an increased titanium compounds content in the reducing conditions of the blast furnace - may rapidly change. The products of the reduction reaction, precipitation and separation of titanium compounds are responsible for the thickening effect of the slag and the problems of permeability of blast furnace, causing anomalies in the functioning of the unit. The presence of solid components (particles) in the melts determines the rheological character of the entire system.Authors have performed a rheological study of synthetic furnace slag concentration of TiO2 in the range of 6% to 30%. The measurements were performed at temperatures in the range between 1310-1490oC. The obtained results made it possible to analyze the rheological characteristics of liquid and semi-solid slag systems and produce flow curves. Identifying the rheological character of semi-solid slag systems provides opportunities for the development of a mathematical model of liquid phase flow in a dripping zone of the blast furnace, allowing for example to indentify the unstable parts of a metallurgical aggregate. Normal 0 21 false false false PL X-NONE X-NONE MicrosoftInternetExplorer4 /* Style Definitions */ table.MsoNormalTable {mso-style-name:Standardowy; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-parent:""; mso-padding-alt:0cm 5.4pt 0cm 5.4pt; mso-para-margin:0cm; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:10.0pt; font-family:"Times New Roman","serif";}


2013 ◽  
Vol 554-557 ◽  
pp. 536-546
Author(s):  
Piotr Migas ◽  
Marta Korolczuk-Hejnak

The applying of burden materials containing titanium compounds in the blast furnace process and the processes of forming titanium carbides and nitrides has a directly impact on the physical and chemical properties of slag and pig iron. Thereby affecting the course of the process, its efficiency and economy. It is known that the dynamic viscosity coefficient of slag – with an increased titanium compounds content in the reducing conditions of the blast furnace - may rapidly change. The products of the reduction reaction, precipitation and separation of titanium compounds are responsible for the thickening effect of the slag and the problems of permeability of blast furnace, causing anomalies in the functioning of the unit. The presence of solid components (particles) in the melts determines the rheological character of the entire system. Authors have performed a rheological study of synthetic furnace slag concentration of TiO2 in the range of 6% to 30%. The measurements were performed at temperatures in the range between 1310-1490oC. The obtained results made it possible to carry out the rheological characteristics of analyzed liquid and semi-solid slag systems and draw of flow curves. Identifying the rheological character of semi-solid slag systems provides opportunities for the development of mathematical modeling of liquid phase flows in a dripping zone of the blast furnace, allowing e.g to indentify the unstable parts of a metallurgical aggregate.


2011 ◽  
Vol 261-263 ◽  
pp. 1070-1073
Author(s):  
Hua Hu ◽  
Meng Yun Zhu

The soft soil is covered widely in China. Soft soil has obvious rheological character, it will induce landslide etc serious geologic disasters, and make severe threaten to stability and security of projects. The dynamic loading such as earthquake, raging billow, vibration are the important factors and mainly power of inducing landslide geological disaster. The rheological parameters of soft soil are tested and analyzed under dynamic loading, and the rheological model of soft soil is established. All these have important theory and actual signification for us to reveal rheological dynamic mechanism of landslide geological disaster under dynamic loading.


2006 ◽  
Vol 306-308 ◽  
pp. 1473-1478
Author(s):  
Wei Shen Zhu ◽  
Jian Hua Liu ◽  
Shu Cai Li

A brief description is given to the visco-plastic constitutive model of 3-D FLAC software and some treating methods for the numerical analysis. The excavation steps and the exerting time of excavation loads are determined in the light of the real construction process. The rockmass mechanical parameters are determined according to back analysis of in-situ measured displacement data. The analysis results of displacement and stability of the opening complex surrounding rocks in the construction process and in a long period of time after excavation completion are given.


Sign in / Sign up

Export Citation Format

Share Document