scholarly journals Gas Turbine Compressor Configuration Analysis for Production and Efficiency Optimization at PT Saka Indonesia Pangkah Ltd.

2021 ◽  
Vol 927 (1) ◽  
pp. 012031
Author(s):  
Muhammad Arif Afandy ◽  
Ifani P Ramadhani ◽  
Totok R Biyanto

Abstract Gas Turbine Compressors are used by Saka Indonesia Pangkah Ltd. in upstream oil and gas facilities either to boost hydrocarbon products to downstream facilities or to lift liquid hydrocarbon as a common artificial method. As production rate declining leads to gas supply deficiency to the compressors, the operating point move to surge line away from the best efficiency point. Gas feed shortage affecting the compressor’s performance which contributed to head and flow capacity. This condition is then calculated and simulated using UNISIM Design Simulator to get optimum configuration results. The simulation was performed at the same gas turbine shaft power output of each compressor. Two cases of centrifugal compressors configuration with different functions and performance are studied. Due to process dynamic conditions, constraint parameter is considered as per desired operating point. This paper also analyses techno-economic aspects between individual and serial pipelines arrangement of the two compressors by evaluating operational data and design calculation. Subsequently, this study produces assessment observations associated with the compressor performance both in individual and serial configuration and eventually analyses the rate of fuel consumption in the gas turbines as the main driver. The case study shows serial arrangement between MPC-1 and GLC with same gas turbine shaft power as individual configuration can reduce fuel consumption up to 47 kg/hr. It saves as much as USD 7,569.96 per day at low demand and USD 7,569.96 at high-demand cases.

2012 ◽  
Vol 2012 ◽  
pp. 1-8 ◽  
Author(s):  
Fereidoon Shabaninia ◽  
Kazem Jafari

The gas turbine is a power plant, which produces a great amount of energy for its size and weight. Its compactness, low weigh, and multiple fuels make it a natural power plant for various industries such as power generation or oil and gas process plants. In any of these applications, the performance and stability of the gas turbines are the end products that strongly influence the profitability of the business that employs them. Control and analyses of gas turbines for achieving stability and good performance are important so that they have to operate for prolong period. Effective control system design usually benefits from an accurate dynamic model of the plant. Characteristic component parts of the system are considered in this model. Gas turbine system is described by specified thermodynamic equations that can be used for defining its model. This paper introduces an optimal LQG/LTR control method for a gas turbine. Analysing the gas turbine dynamic in time and frequency domain by using proposed control compared to PID controller is followed. Applying this optimal control method can provide good performance and stability for the component parts of system.


Author(s):  
Klaus Brun ◽  
Luis Eduardo Gonzalez ◽  
John P. Platt

The usage of an industrial inlet fogging and overspraying system on BP Colombia’s fleet of GE 5002 gas turbines was intended to provide additional shaft power output and improved efficiency. However, operating experience has shown less than anticipated power increase and almost no efficiency change, while the gas turbines have experienced more rapid degradation. Consequently, a detailed study was undertaken to identify the principal degradation mechanisms and quantify their relative influence on the gas turbine’s performance and life reduction. This study included a field assessment; review and analysis of the installation and operating data from the historical trend monitoring system; inspection of a rotor for fouling, corrosion, and pitting; materials analysis of the fouling deposits, rotor surface pitting, and inlet filter media; review of the function and effects of inlet fogging and overspray; assessment of the effectiveness of the current on-line/off-line compressor washing program and its compatibility with the overspraying operation; and an analysis of the overall gas turbine efficiency to determine levels of performance degradation. Results from this study identified the principal gas turbine degradation mechanisms, such as blade erosion, corrosion, fouling tip clearance widening, their causes and their relative influence on the overall performance. For example, the study showed that the total power and efficiency degradation of the units exceeded 10% at the time of the rotor overhaul which is well above what is expected for this type of gas turbine. About 70% of this degradation was due to blade erosion and rotor clearance widening. These were attributed to the water overspray operation of the gas turbines. Surface fouling and pitting also contributed about 20% to the total performance degradation. For the given site conditions, the fogging and overspray system provided a gas turbine performance boost of approximately 2–5% in power and less than 0.5% in efficiency. Of this performance gain, saturation fogging accounted for about 85%, while overspray only provided 15%. The principal findings of this study showed that, while the fogging worked, the performance degradation due to water overspray negated most performance gains after only about 24,000 hours of operation. More detailed findings are included in the paper.


Energies ◽  
2018 ◽  
Vol 11 (12) ◽  
pp. 3521 ◽  
Author(s):  
Panagiotis Stathopoulos

Conventional gas turbines are approaching their efficiency limits and performance gains are becoming increasingly difficult to achieve. Pressure Gain Combustion (PGC) has emerged as a very promising technology in this respect, due to the higher thermal efficiency of the respective ideal gas turbine thermodynamic cycles. Up to date, only very simplified models of open cycle gas turbines with pressure gain combustion have been considered. However, the integration of a fundamentally different combustion technology will be inherently connected with additional losses. Entropy generation in the combustion process, combustor inlet pressure loss (a central issue for pressure gain combustors), and the impact of PGC on the secondary air system (especially blade cooling) are all very important parameters that have been neglected. The current work uses the Humphrey cycle in an attempt to address all these issues in order to provide gas turbine component designers with benchmark efficiency values for individual components of gas turbines with PGC. The analysis concludes with some recommendations for the best strategy to integrate turbine expanders with PGC combustors. This is done from a purely thermodynamic point of view, again with the goal to deliver design benchmark values for a more realistic interpretation of the cycle.


2021 ◽  
Author(s):  
M. A. Ancona ◽  
M. Bianchi ◽  
L. Branchini ◽  
A. De Pascale ◽  
F. Melino ◽  
...  

Abstract Gas turbines are often employed in the industrial field, especially for remote generation, typically required by oil and gas production and transport facilities. The huge amount of discharged heat could be profitably recovered in bottoming cycles, producing electric power to help satisfying the onerous on-site energy demand. The present work aims at systematically evaluating thermodynamic performance of ORC and supercritical CO2 energy systems as bottomer cycles of different small/medium size industrial gas turbine models, with different power rating. The Thermoflex software, providing the GT PRO gas turbine library, has been used to model the machines performance. ORC and CO2 systems specifics have been chosen in line with industrial products, experience and technological limits. In the case of pure electric production, the results highlight that the ORC configuration shows the highest plant net electric efficiency. The average increment in the overall net electric efficiency is promising for both the configurations (7 and 11 percentage points, respectively if considering supercritical CO2 or ORC as bottoming solution). Concerning the cogenerative performance, the CO2 system exhibits at the same time higher electric efficiency and thermal efficiency, if compared to ORC system, being equal the installed topper gas turbine model. The ORC scarce performance is due to the high condensing pressure, imposed by the temperature required by the thermal user. CO2 configuration presents instead very good cogenerative performance with thermal efficiency comprehended between 35 % and 46 % and the PES value range between 10 % and 22 %. Finally, analyzing the relationship between capital cost and components size, it is estimated that the ORC configuration could introduce an economical saving with respect to the CO2 configuration.


Author(s):  
Daniel E. Caguiat

The Naval Surface Warfare Center, Carderock Division (NSWCCD) Gas Turbine Emerging Technologies Code 9334 was tasked by NSWCCD Shipboard Energy Office Code 859 to research and evaluate fouling resistant compressor coatings for Rolls Royce Allison 501-K Series gas turbines. The objective of these tests was to investigate the feasibility of reducing the rate of compressor fouling degradation and associated rate of specific fuel consumption (SFC) increase through the application of anti-fouling coatings. Code 9334 conducted a market investigation and selected coatings that best fit the test objective. The coatings selected were Sermalon for compressor stages 1 and 2 and Sermaflow S4000 for the remaining 12 compressor stages. Both coatings are manufactured by Sermatech International, are intended to substantially decrease blade surface roughness, have inert top layers, and contain an anti-corrosive aluminum-ceramic base coat. Sermalon contains a Polytetrafluoroethylene (PTFE) topcoat, a substance similar to Teflon, for added fouling resistance. Tests were conducted at the Philadelphia Land Based Engineering Site (LBES). Testing was first performed on the existing LBES 501-K17 gas turbine, which had a non-coated compressor. The compressor was then replaced by a coated compressor and the test was repeated. The test plan consisted of injecting a known amount of salt solution into the gas turbine inlet while gathering compressor performance degradation and fuel economy data for 0, 500, 1000, and 1250 KW generator load levels. This method facilitated a direct comparison of compressor degradation trends for the coated and non-coated compressors operating with the same turbine section, thereby reducing the number of variables involved. The collected data for turbine inlet, temperature, compressor efficiency, and fuel consumption were plotted as a percentage of the baseline conditions for each compressor. The results of each plot show a decrease in the rates of compressor degradation and SFC increase for the coated compressor compared to the non-coated compressor. Overall test results show that it is feasible to utilize anti-fouling compressor coatings to reduce the rate of specific fuel consumption increase associated with compressor performance degradation.


Author(s):  
George M. Koutsothanasis ◽  
Anestis I. Kalfas ◽  
Georgios Doulgeris

This paper presents the benefits of the more electric vessels powered by hybrid engines and investigates the suitability of a particular prime-mover for a specific ship type using a simulation environment which can approach the actual operating conditions. The performance of a mega yacht (70m), powered by two 4.5MW recuperated gas turbines is examined in different voyage scenarios. The analysis is accomplished for a variety of weather and hull fouling conditions using a marine gas turbine performance software which is constituted by six modules based on analytical methods. In the present study, the marine simulation model is used to predict the fuel consumption and emission levels for various conditions of sea state, ambient and sea temperatures and hull fouling profiles. In addition, using the aforementioned parameters, the variation of engine and propeller efficiency can be estimated. Finally, the software is coupled to a creep life prediction tool, able to calculate the consumption of creep life of the high pressure turbine blading for the predefined missions. The results of the performance analysis show that a mega yacht powered by gas turbines can have comparable fuel consumption with the same vessel powered by high speed Diesel engines in the range of 10MW. In such Integrated Full Electric Propulsion (IFEP) environment the gas turbine provides a comprehensive candidate as a prime mover, mainly due to its compactness being highly valued in such application and its eco-friendly operation. The simulation of different voyage cases shows that cleaning the hull of the vessel, the fuel consumption reduces up to 16%. The benefit of the clean hull becomes even greater when adverse weather condition is considered. Additionally, the specific mega yacht when powered by two 4.2MW Diesel engines has a cruising speed of 15 knots with an average fuel consumption of 10.5 [tonne/day]. The same ship powered by two 4.5MW gas turbines has a cruising speed of 22 knots which means that a journey can be completed 31.8% faster, which reduces impressively the total steaming time. However the gas turbine powered yacht consumes 9 [tonne/day] more fuel. Considering the above, Gas Turbine looks to be the only solution which fulfills the next generation sophisticated high powered ship engine requirements.


2011 ◽  
Vol 133 (04) ◽  
pp. 52-52
Author(s):  
Rainer Kurz

This article discusses the importance of gas turbines, centrifugal compressors and pumps, and other turbomachines in processes that bring natural gas to the end users. To be useful, the natural gas coming from a large number of small wells has to be gathered. This process requires compression of the gas in several stages, before it is processed in a gas plant, where contaminants and heavier hydrocarbons are stripped from the gas. From the gas plant, the gas is recompressed and fed into a pipeline. In all these compression processes, centrifugal gas compressors driven by industrial gas turbines or electric motors play an important role. Turbomachines are used in a variety of applications for the production of oil and associated gas. For example, gas turbine generator sets often provide electrical power for offshore platforms or remote oil and gas fields. Offshore platforms have a large electrical demand, often requiring multiple large gas turbine generator sets. Similarly, centrifugal gas compressors, driven by gas turbines or by electric motors are the benchmark products to pump gas through pipelines, anywhere in the world.


2022 ◽  
Vol 30 (1) ◽  
pp. 725-745
Author(s):  
Akmal Haziq Mohd Yunos ◽  
Nor Azali Azmir

Noise measurement is essential for industrial usage. However, further attention to preventing noise pollution is needed, especially when working with equipment generating a high noise level, such as gas turbines. This study aims to determine the best way to perform noise measurement and analyze the octave band frequency generated by noise pollution caused by gas turbine equipment. Data from site measurements show that the gas turbines produce more than 85 dB of noise with a Z-weighted measurement. A noise measuring investigation was conducted to obtain the data for the 1/3 octave band. A frequency-domain was used to comprehend the properties of the noise measurement frequency band. The frequency band was classified into three different zones called low, medium, and high frequency, which is useful in noise measurement analysis to identify a viable solution to reduce the noise. On-site sampling was performed at the source, path, and receiver of three separate gas turbine locations within oil and gas operations. The 1/3 octave band data collection results at the sound source, path, and receiver demonstrate the noise level distribution at the perimeter of gas turbine installations in the low and medium frequency ranges. Most of the high noise frequency range is between 250 Hz and 2 kHz for source, path, and receiver. All acquired values are compared to the Department of Safety and Health (Occupational Safety and Health (Noise Exposure) Regulations 2019 in Malaysia. As a result, oil and gas service operators can monitor and take countermeasures to limit noise exposure at oil and gas facilities.


Author(s):  
Z. Stanley Stys

Application of the gas turbine in nitric-acid plants appears attractive. Several of these units have been installed recently in this country and performance and operating experience already have been gained. Design, construction, and layout of “package” units for this particular process are described.


Author(s):  
Chippa Anil ◽  
Aparna Satheesh ◽  
Babu Santhanagopalakrishnan ◽  
Marcin Bielecki

Abstract Heavy duty gas turbines are usually equipped with hydrodynamic bearings which are either lemon-bore or tilting pad type. Baker Hughes legacy gas turbines use these two types of bearings, and its selection is based on 1) considering pros & cons from Rotor dynamics, 2) bearing performance, 3) bearing housing stiffness, 4) vibration detection & control. Non-contact probes are used to monitor the vibrations of rotor. Majority of legacy gas turbines are not equipped with these probes. Due to this fact, over the years it resulted in non-detection of dynamics & vibration issue, which caused frequent bearing replacement. As the increase in industry demand to apply and measure vibrations using non-contact probes on bearings, an effort was made by Baker Hughes to implement these on existing fleet units. Also, in order to increase rotor dynamics stability of low-pressure rotor, to improve bearing life and performance, effort was made to replace lemon-bore bearings with tilting pad. This paper demonstrates efforts made to design the titling pad which would fit within envelop of already available bearing housing. Bearing/shaft clearance, bearing performance, modification of bearing retainer clearances are the mandatory tasks which would be dealt in this study. The swap of bearing type, and its effect on whole gas turbine rotor dynamic stability, checking the frequency crossovers with Campbell diagram would also be dealt in this paper. This paper also focuses on assessment on oil passage routing, temperature & proximity probe instrumentation routing design. Re-design is performed by analyzing various configuration, assessing different sensitivity studies & validation of modified bearing housing from structural integrity, ultimate load capability, & split plane oil leakage retention and its comparison with baseline are most important aspects of finalization of this change, which will be showcased in this paper. Instrumentation routing was a critical task when the considering bearing replacement from lemon-bore to tilting pad. As lemon-bore type bearings just have an elliptical inner surface, it’s quite easy to install the thermocouples into a simple hole. But as replacement has tilting pads, the challenge is to instrument the pads without effecting their movement and functionality. Such best practices are also dealt in this paper. Comparison of tilting-pad with lemon-bore, considering the fixed shaft diameter, the retainer outer diameter of tilting pad is higher than lemon-bore. This effect has a change in bearing seat on bearing housing, thereby reducing the effective stiffness of the housing, and the reduced split plane surface. To tackle this situation, several sensitivities were executed, by re-modifying the bolts and bolt holes on the existing housing, without modifying the housing envelop.


Sign in / Sign up

Export Citation Format

Share Document