scholarly journals Design of local heterogeneous system control networks of a new generation with the preservation of the optimality of the main topological functionals of the network

2021 ◽  
Vol 2091 (1) ◽  
pp. 012038
Author(s):  
M F Karavay ◽  
A M Mikhailov

Abstract The paper discusses On-Board Computing Control Systems (OBCS) in astronautics, avionics, autonomous mobile devices, robotics, weapons control and multi-core microprocessors. This is sort of a “backbone”, which unites many sensors, calculators, control and executive devices. The architecture of these networks was developed some 30-40 years ago. At that time, these systems met the technical conditions in terms of dynamics and reliability. Nowadays, these systems must perform their functions for 10 to 15 years without maintenance. The performance of system networks must be high enough to solve such tasks as monitoring “swarms” that comprise hundreds of objects or work as a “garbage collectors” in space orbits. Nevertheless modern system networks continue to be based on bus or multi-bus architectures. Since these systems are serial for active nodes, a multi-bus solution is a main way to increase the performance of networks by using very high frequencies that amount to 2 ÷ 4 GHz. It’s an extensive path of development, which is problematic. More acceptable would be an intensive path of development, which, in electronics and computer engineering, is associated with the parallelism of task execution. It means that the operating frequencies may not be ultra-high, not exceeding that of modern devices for frequencies of 10 – 600 MHz. However, such devices should work in a parallel mode. The paper proposes a new approach to designing of heterogeneous parallel control system networks, solving parallel tasks, and a conflict-free management of “passive” nodes. To the best of our knowledge, such control system networks are not available as yet.

Author(s):  
Fahmi Yunistyawan ◽  
Yunistyawan J Berchmans ◽  
Gembong Baskoro

This study implements the auto start control system on an electric motor 3 phase C4Feeding pump when the discharge pressure is low-low (4.3 kg /cm²). The C4 feeding pumpmotor was initially manually operated from the local control station, this was very ineffectiveand inefficient because it still relied on the field operator to operate the pump motor and whenthe plant was in normal operating it is very risk if the field operator late to operate motor then itwill impact to quality of the product, and if the delay time to operate motor is too long then planthave to shut down, therefore improvement is needed in the C4 feeding pump motor controlsystem. In this paper, various types of 3-phase motor control are explained which allow it to beapplied to the C4 feeding pump motor that are on-off, inverter, and variable speed drive andefficient selection of the three systems control of the motor. Software and hardware used in thisthesis work are DCS CENTUM VP Yokogawa.


2017 ◽  
Vol 137 (6) ◽  
pp. 434-445 ◽  
Author(s):  
Hiroshi Yoshida ◽  
Ryuji Tachi ◽  
Koya Takafuji ◽  
Hironori Imaeda ◽  
Masaru Takeishi ◽  
...  

Author(s):  
A.I. Glushchenko ◽  
M.Yu. Serov

В статье рассматривается вопрос совершенствования системы управления параллельно-работающими насосными агрегатами с целью повышения энергоэффективности их работы. Проведено сравнение и выявление недостатков существующих методов решения рассматриваемой проблемы. Предложена идея нового подхода на базе онлайн оптимизации. The problem under consideration is improvement of the energy efficiency of a control system of parallel-running pump units. Known methods used to solve this problem are considered. Their advantages and disadvantages are shown. Finally, the idea of a new approach, which is based on online optimization, is proposed.


Author(s):  
David D. Nolte

Galileo’s parabolic trajectory launched a new approach to physics that was taken up by a new generation of scientists like Isaac Newton, Robert Hooke and Edmund Halley. The English Newtonian tradition was adopted by ambitious French iconoclasts who championed Newton over their own Descartes. Chief among these was Pierre Maupertuis, whose principle of least action was developed by Leonhard Euler and Joseph Lagrange into a rigorous new science of dynamics. Along the way, Maupertuis became embroiled in a famous dispute that entangled the King of Prussia as well as the volatile Voltaire who was mourning the death of his mistress Emilie du Chatelet, the lone female French physicist of the eighteenth century.


Energies ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1749
Author(s):  
Elzbieta Szychta ◽  
Leszek Szychta

Energy efficiency of systems of water pumping is a complex problem since efficiency of two distinct interacting systems needs to be combined: water and power supply. This paper introduces a non-intrusive method of calculating the so-called “collective losses” of a cage induction motor. The term “collective losses”, which the authors define, allows for accurate estimation of motor efficiency. Control system of a pump determines operating point of a pumping station, and thus its efficiency. General estimated performance characteristics of a motor, components of a control system, are assumed to serve selection of a range of pumping speed variations. Rotational speed has a direct effect on motor load torque, pump power and head, and thus on motor performance. Hellwig’s statistical method was used to specify characteristics of estimated collective losses on the basis of experimental studies of 21 motors rated at up to 2.2 kW. The results of simulations and experiments are used to verify validity and efficiency of the suggested method. The method is non-intrusive, simple to use, and requires minimum data.


Energies ◽  
2018 ◽  
Vol 12 (1) ◽  
pp. 27 ◽  
Author(s):  
Linfei Hou ◽  
Liang Zhang ◽  
Jongwon Kim

To improve the energy efficiency of a mobile robot, a novel energy modeling method for mobile robots is proposed in this paper. The robot can calculate and predict energy consumption through the energy model, which provides a guide to facilitate energy-efficient strategies. The energy consumption of the mobile robot is first modeled by considering three major factors: the sensor system, control system, and motion system. The relationship between the three systems is elaborated by formulas. Then, the model is utilized and experimentally tested in a four-wheeled Mecanum mobile robot. Furthermore, the power measurement methods are discussed. The energy consumption of the sensor system and control system was at the milliwatt level, and a Monsoon power monitor was used to accurately measure the electrical power of the systems. The experimental results showed that the proposed energy model can be used to predict the energy consumption of the robot movement processes in addition to being able to efficiently support the analysis of the energy consumption characteristics of mobile robots.


2013 ◽  
Vol 738 ◽  
pp. 272-275
Author(s):  
Dun Chen Lan

In the field of mechanical automation, intelligent industrial robot technology is an important branch in the research field of robot; it is always the hot spots of the world robot research, and it being used to get the application in the industry today. Robot experiment platform of PLC and motor control technology, it based on the control method used by the robot control system improvements to make it more perfect run more precise, reasonable. In the same time, the man-machine interface state run monitoring, to ensure the normal operation of the system. Improved control method of the improvement of the work efficiency, reduce the work of the workers a duplication degree have a significant effect, and the system control at the scene, especially PLC control has excellent control function and good cost performance .


Sign in / Sign up

Export Citation Format

Share Document