multilayer membrane
Recently Published Documents


TOTAL DOCUMENTS

66
(FIVE YEARS 11)

H-INDEX

16
(FIVE YEARS 2)

2021 ◽  
pp. 119943
Author(s):  
Chen Wang ◽  
Myoung Jun Park ◽  
Dong Han Seo ◽  
Sherub Phuntsho ◽  
Ralph Rolly Gonzales ◽  
...  

Processes ◽  
2021 ◽  
Vol 9 (3) ◽  
pp. 446
Author(s):  
Jumardi Roslan ◽  
Siti Mazlina Mustapa Kamal ◽  
Khairul Faezah Md. Yunos ◽  
Norhafizah Abdullah

Production of small-sized peptides is significant because of their health benefits. Ultrafiltration (UF) membrane provides an effective fractionation of small-sized peptides on a large scale. Thus, the present study was aimed to evaluate the performance of multilayer UF membrane in fractionating tilapia fish by-product (TB) protein hydrolysate by observing the permeate flux, peptide transmission, and peptide distribution under different stirring speed, pH of feed solution, and salt concentration (NaCl). The fractionation process was carried out using a dead-end UF membrane system that consists of a stack of two membrane sheets with different (10/5 kDa) and similar (5/5 kDa) pore sizes in one device. The highest permeate flux (10/5 kDa–39.5 to 47.3 L/m2.h; 5/5 kDa– 15.8 to 20.3 L/m2.h) and peptide transmission (10/5 kDa–51.8 to 61.0%; 5/5 kDa–18.3 to 23.3%) for both multilayer membrane configurations were obtained at 3.0 bar, 600 rpm, pH 8, and without the addition of salt. It was also found that the permeates were enriched with small-size peptides (<500 Da) with a concentration of 0.58 g/L (10/5 kDa) and 0.65 g/L (5/5 kDa) as compared to large-sized peptides (500–1500 Da) with concentration of 0.56 g/L (10/5 kDa) and 0.36 g/L (5/5 kDa). This might indicate the enrichment of small-size peptides through the multilayer membrane which could potentially enhance the biological activity of the protein hydrolysate fraction.


2020 ◽  
Vol 35 (4-5) ◽  
pp. 351-362
Author(s):  
Ingrid Juliet Rodríguez-Sánchez ◽  
Natalia Fernanda Vergara-Villa ◽  
Dianney Clavijo-Grimaldo ◽  
Carlos Alberto Fuenmayor ◽  
Carlos Mario Zuluaga-Domínguez

Electrospinning was used to produce fibrous membranes, in single and multiple layers, from poly(ε-caprolactone), pullulan, and from mixtures of poly(ε-caprolactone) with potato modified starch and β-glucan. It was possible to obtain single-layer membranes from solutions of pullulan in water, poly(ε-caprolactone) in chloroform, and from mixtures of poly(ε-caprolactone)/β-glucan and poly(ε-caprolactone)/potato modified starch in chloroform. Scanning electron microscopy images showed the formation of ultrathin homogeneous fibers from electrospun poly(ε-caprolactone) and pullulan, whereas the fibers obtained from mixtures of poly(ε-caprolactone)/ β -glucan and poly(ε-caprolactone)/potato modified starch had different sizes and morphologies, as well as irregular microstructures, characterized by the presence of beads. Contact angle analyses showed that pullulan membranes were extremely hydrophilic, while poly(ε-caprolactone) membranes were predominantly hydrophobic. Subsequently, poly(ε-caprolactone)-pullulan-poly(ε-caprolactone) multilayer membranes, with intermediate wettability, were prepared by successive electrospinning steps. Infrared spectroscopy and calorimetric analyses showed the presence of both polymers and the absence of changes in their structure and stability due to electrospinning, indicating adequate compatibility between the two polymers. We foresee that the polyester-polysaccharide multilayer membrane might be used as a biodegradable vehicle for active agents with different hydrophobicity, with applications as food packaging and biocompatible scaffold materials.


2020 ◽  
Vol 12 (10) ◽  
pp. 12133-12142 ◽  
Author(s):  
Ying Song ◽  
Zhili Li ◽  
Jiubing Zhang ◽  
Ying Tang ◽  
Yuanyuan Ge ◽  
...  

2019 ◽  
Vol 1 (2) ◽  
pp. 1-11
Author(s):  
Gobi Nallathambi ◽  
Hazel Dhinakaran

Air separation is a process of separating primary components from the atmospheric air. Development of membrane technologies plays a key role in air separation. Multi-layer polymeric nanocomposite membranes have been developed by a novel technique using Polyacrylonitrile (PAN) and cellulose acetate (CA) along with nano silica particles (SiO2) to obtain a higher oxygen selectivity and permeability. For the construction of the multilayer membrane, the Box-Behnken design has been used by employing three independent variables namely PAN Electro spinning time, the SiO2 percentage in the PAN polymer and CA/PEG polymer concentration. The developed membranes have been characterized for its surface morphology and physical properties. Along with the analysis of compound desirability, the results were also subject to statistical analysis in order to form regression equations. The electro spun fiber diameter increases along with the concentration of SiO2 nanoparticles and the range is from 50 nm to 400 nm. Moreover, the maximum pore size on the surface of the membrane lies between 200 to 400 nm whereas the maximum percentage of oxygen purity obtained is 48 with the permeate flux of 5.45 cm3/cm2/min.


Author(s):  
Jiankui Chen ◽  
Xi Jiang ◽  
Wei Tang ◽  
Liang Ma ◽  
Yiqun Li ◽  
...  

A membrane electrode assembly is the core component of a proton-exchange membrane fuel cell stack. It consists of multilayer structured membranes which are flexible, heterogeneous and have variable cross section. To improve the efficiency of membrane electrode assembly processing and manufacturing, a roll-to-roll system with gas diffusion layer is designed. By peeling the protective membrane and the upper and lower gas diffusion layers’ hot-pressing, proton-exchange membrane is manufactured into a five-layer catalyst-coated membrane. Then, the catalyst-coated membrane is manufactured into membrane electrode assembly by multilayer membrane breakpoint die-cutting and laying-off. The system integrates multiple key technologies, including roll-to-roll precise feeding, gas diffusion layer multi-degree accurate operation and multichannel temperature control, to realize the precise positioning of flexible multilayer membrane and brittle gas diffusion layer. The tension inhomogeneity and critical wrinkling tension are modeled for web traveling in the continuous roll-to-roll manufacturing equipment. The proposed roll-to-roll stack and lamination system effectively combines discontinuous hot-pressing, die-cutting, laying-off technics to realize the high-efficiency manufacturing of membrane electrode assembly.


Sign in / Sign up

Export Citation Format

Share Document